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I. SATELLITE NAVIGATION SYSTEMS AND RELATIVE POSITIONING

A, Satellite Navigation

The Navy Navigation Satellite System (NNSS), also called Transit,
has been operational since 1964 and uses four satellites in circular
polar orbits at 600 hiles of altitude, Each satellite transmits a
stable 400 MHz continuous wave which is phase modulated with binary data
describing the satellite trajectory and timing markers.

Anywhere on earth one can track a satellite pass and get a position
fix every 1 1/2 to 2 hours, The relative velccity of the satellite with
respect to the earth surface creates a Doppler shift in the 400 MHz sig-
nal when it is received by a ground station, The received signal is com-
pared with that of a ground oscillator, the difference between them being
integrated for each period of about 20 seconds between timing marks, thus
generating a sequence of Doppler counts, This sequence is determined by
the satellite path, the location of the receiver on earth, and both
oscillator offsets. A least square fitting technique is used to find
which ground position and oscillator offsets best explain the observed
sequence of counts and gives their estimates (Fig., 1.1). A more complete

description of the Transit system can be found in (13).

attractive one involves stationary satellites which could be used for
other purposes as well, such as relays. Stationary satellites being
higher (about 20,000 miles altitude) also provide a good basis for tri-
angulations for the navigation of space ships in the vicinity of the

earth in addition to sea level or low altitude aircraft positioning.



Stationary satellites do not generate Doppler shifts in the signals
received on the ground, and therefore the range measurements have to be
obtained directly from time measurements, We show here that this method
of ranging by time measurements could be used to improve the present
Transit receivers and is very advantageous for relative positioning,

At present, one advantage of Transit is that it exists and is main-
tained by the United States Navy and free for the other users, Another
advantage is that it is a passive system since it does not require the
satellite to respond to a particular user therefore not limiting the
number of users and completely separating the Navy's responsibilities

from the user's.

B, Relative Positioning (Translocation, Fig. 1.2)

If two receivers are close enough to track the same satellite pass,
high accuracy in the relative position estimate can be expected because
of crosscorrelation in the absolute position errors and also the fact
that satellite position errors nearly cancel out (16)., In surveying
applications the data (Doppler counts) do not have to be processed imme-
diately and could be processed later on a large computer, thus simplify-
ing the receivers by suppressing the small computers normally found on
Transit receivers. So
ventional receivers using NDoppler counts only for ranging., It still
would be possible to use accurate atomic clocks in both receivers to
measure the time of arrival of the markers sent by the satellite and use

the time lag between them in addition to Doppler counts to find the



relative positions of the receivers, The time lag between arrival of the
same marker in both receivers is directly proportional to their relative
distance and should be advantageous for relative positioning, Such a
system does not require any change in the present Transit system as far
as the satellite and all the Navy's tracking stations are concerned.

Only the receivers need to be changed.

In this research we evaluate the improvement obtained in both abso-
lute and relative positianing using time measurements in addition to
Doppler counts.

The performance of a system using time measurements only is evalu-

ated as well as the performance of a simplified suboptimal version of it.

C. Surveying
Surveying using electromagnetic waves (without a satellite) involves

receiving signals from two ground transmitters also being used as a tri-

cal systems depending if the sensors respond to distance, distance dif-
ference, or distance sum respectively., These systems, for ranges of
about 100 miles, have a relative accuracy of about 30 feet (7). More
accurate distance measurements can be made using higher carrier frequen-
cies but require a direct line of sight between transmitter and receiver,
which is often not practical.

Using a satellite pass is then equivalent to having it act as a suc-
cession of transmitters which are used for triangulation provided the

satellite path is known with sufficient accuracy. Then the translocation



system can be used for surveying purposes and give the relative position
of one receiver with respect to the other in terms of altitude, latitude,
and longitude without the need of a direct line of sight and without need

of a third piece of equipment to triangulate with,
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Fig. 1.1. Satellite navigation

receiver A

I'ig. 1.2. Relative positioning



I1. SYSTEM INTEGRATION

A. Introduction

In this chapter some results on Kalman filtering are recapitulated,
and the coordinate systems used are defined and used to get the dynamic
model and the measurement model. Miscellaneous parameters necessary for
the Kalman filter are also defined, Last, the modeling of a simplified
translocation systeﬁ is explained,

The observables used to estimate absolute and relative positims of
the ground receivers are the measured Doppler counts and the times of
arrival of the markers in addition to the predicted satellite trajectory
(Fig. 2.1). The observables are nonlinear functions of the receiver's
positions, satellite position, and also oscillator frequencies and clock
svnchronization error. In order to have a linear model the estimation
procedure is not done on the actual measurements, Rather the position
errors are estimated b
"measurements'' based on the originai reference estimates of receivers and
satellite positimns, and oscillators and clock offsets,

"wo modes of operation can exist.

In the open loop mode computed measurements are always based on the
same original reference estimates, The final estimates being equal to
the original reference estimates minus the estimated errors.

In the closed loop mode the reference estimates on which the com-
puted measurements are based are updated at each step making the refer-
ence estimates closer to the true values and thus reducing the interval

of linearization of cach estimated variable, There is no analytical way
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of knowing if the closed loop mode of operation is stable and converges,
If stable, it should be, on the average, more accurate than the open loop
system since the approximation due to the linearization is reduced at
each step, while in the open loop mode the linearization remains only as
good as the original estimates. This last statement is only a heuristic
argument which makes sense from an engineering view point, and there is
no known analytical way to prove it. Only a !lonte Carlo simulation could
give an idea of the closed loop operation in terms of stability and ac-
curacy., Simulating the open loop mode should give an upper bound for the
average estimation error of the closed loop system should it be stable,
In order to save computer time a variance analysis of the open loop mode
is made rather than & Monte Carlo simulation, For the open loop mode the
only advantage of a ‘lonte Carlo simulation would be to give an idea of
the errors caused by the linearization but this is already known to be
negligible from existing navigation systems which use the same type of
linearized equations.

Because of its convenience for computer implementation in a real

life system, a Kalman f[ilter is used for the estimator.

B, Kalman Filter
Kalman filter theory is adequately treated elsewhere so only the

salient aspects will be mentioned here,

1. Standard Kalman filter

The process to be estimated is assumed to satisfy the vector differ-

ential equation



x = A(t)x + u(t) (2.1)
where x = System state vector
A(t) = Dynamics matrix
u(t) = White noise input vector

Nanwhite processes are modeled by having a shaping filter act on a
white noise, as shown by Sorenson (12) and Brown (1), thus augmenting the
size of the matrix A and fitting the above model,

Discretizing (2.1) we get

Xp+1 = ¢nXn * &n (2.2)
where X, = State vector at time t

¢, = Transition matrix

g, = Response to white noise input vector

in interval t; to t .y

The inputs (data) for the Kalman filter arc discrete measurements of

the form
Yo = Mg * O (2.3)
where yn = Measurement vector at time t
M, = Measurement matrix at time tn

8y, = Time uncorrelated measurement error vector
Assuming all the above, Kalman (9) has shown that xﬁ . the minimum

mean square error estimate of x., is given by
in = i'n + b0 - Mn;('n) (2.4)
with error covariance matrix P, = E(X, - x3) (X, - xn)T

given by P =P - b (MPMT + v b T (2.5)
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1

where by = P M TPE M T+ v ) (2.6)
X'y = ¢n-1%n-1 (2.7)

Py = ¢n-1Pn-19-1" * Hp-1 (2.8)

Hyq = Egn-18p-1") (2.9)
V, = E(éypy, D) (2.10)

The above equations give a recursive way to get the best esfimate of
x, and the corresponding estimation error on the basis of the last esti—l
mate of the state vector in-l and its error covariance matrix P,_j the
new measurement vector y,, and its known connection with the state vector
(i.e. the matrix M,), and measurement error statistic V,. All other
needed parameters are intrinsic to the dynamic model (2.1) and (2.2).

In practice, the dynamic model is known before hand even though the
knowledge of 9n-1 and Hy_q is only needed at time t, in order to get fcn.

The same applies to the measurement model (M, and V) which is very
useful in practice since any new measurement of any linear combination of
the state components can be used. This permits the use of new sources of
"information" as they occur without needing prior knowledge of their
occurrences and relationships to the states, The limitations to this
versatility are due to programming limitations, not to the Kalman algo-
rithm itself,

The above one step equations require t2t,.7. The case t; = ty.1
(¢ = I) corresponds to re-updating the estimate using a new measurement
synchronous with the last one used and such that their errors are not

cross correlated. This permits simplification of the computations in the
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case of a high dimension measurement vector if it can be broken down into
several measurements with independent errofs and processing each measure-
ment sequentially (12).

The above equations do not work for tj<t,_; (smoothing) but a re-
cursive Kalman algorithm does exist (1),

If the recursive procedure is started with x, = E(x,) and Pg =
E(xoX,l) then the estimate X, is wnbiased.

Kalman filter using a gain b, different from the optimal given by
(2.6) is suboptimal, and the associated error covariance is then obtained
by replacing (2.5) by:

o= (1 - bM )P (I -bM)T +bvb T (2.11)

2. Delayed state Kalman filter

In some applications, processing of Doppler counts for ir}stance, the
measurement vector is a linear combination of both present and previous
state vector, Or:

Yn = ¥y T NpXp-1 T O (2.12)

A Kalman filter for this model is given by Brown and Hartman in (3).
Stuva (15) derived an equivaleni algorithm that is less sensitive to
round off errors in the case of Doppler counts applicaticns,

Equations (2.2) and (2.12) describe the model,

The recursive equations for Stuva's algorithm are:

by =[%n-1Pn-10htn-1 * N T + Hoo 10 (2.13)

X = 9n-1%p-1 * Pl - o1+ Np)Xpe] | (2.14)
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Py = ¢0-1Pn-1%n-1" * Hn-1 - bnGabn! (2.15)
where
Q = (Myép-1 * Nn)Pp-j(Mpén-g + Np)T + vy + T‘inﬂn-anT (2.16)

C. Coordinate Systems

The coordinate systems used are shown on Fig., 2.2,

The coordinate system used throughout to define positioms of re-
ceivers and satellite and used to define the state variables is earth-
fixed polar. An absolute (inertial) coordinate system is not necessary
here since this study does not involve sensors responding to accelera-
tions.

Two other coordinate systems are used only for the computations re-
lated to geometry in the measurement model., They are the earth-fixed
rectangular coordinate system and the local rectangular coordinate system

" which permits the definition of direction cosines,

simulation to convert position uncertainties in latitude and longitude,
expressed in radians, to position uncertainties in feet in the east-west

and north-south directions,

D. Dynamic Model
1. Introduction
For implementation of the Kalman filter the dynamic model includes
states for the ground receivers' positions, satellite coordinates and

states for oscillators and clocks errors.
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(Rp»0p,1a) Earth fixed polar
North (Xa»Ya,ZA) Earth fixed rectangular

(Xpa»YarzA) Local rectangular
For point A

Greenwich
meridian

/

Equatorial
plane

Fig. 2.2. Coordinate systems
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The satellite position errors (deviations from the predicted path)
are assumed to be harmonic of periocd equal to the time of revolution of
the satellite. This would be unrealistic if the same satellite was to be
used for several successive passes as the satellite position errors are
mainly caused by a lack of knowledge of the earth gravity field, Since
in the simulation we use the same satellite only ance and since the time
the satellite is tracked is short compared to one perioci this simple way
of simulating the position errors of the satellite does not affect the
validity of the results.

The oscillator errors and clocks errors are modeled using the shap-
ing filter technique.

2. Receivers position errors

SRpy 864, OAp are coordinates errors for receiver A,
Ry, 66y, SAp are coordinates errors for receiver B.
These states are modeled as random constant biases. Thus
xj =0 (2.17)

3. Satellites position eivors

6R

Y

s» OAg are coordinates errors of the satellite,

These states are modeled as harmonic processes of independent random

A A (\/\||ﬂ1 +n *tha +sma
H cGual L0 Wil

\1 43
tion, Each satisfies the differential equation:
2

X+ w

x=0 (2.18)

or in state form:

X3 i 0 1 X5
).(1.‘_1 "UZ 0 L xi"'l (2. 19)
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Since we assume phase and amplitude to be independent we have for
initial condition:
Eix(0)x(0)] = 0 (2.20)

4. Receivers and satellites oscillators time correlated errors

The frequency errors of the satellite oscillators are modeled as
independent first-order Gaussian Markev processes, Each is generated by
a shaping filter (4 and 12), acting on a white noise driving functiau,

whose input-output differential equation in state form is:

Xi = -BiX; +V 2052 8; fj (2.21)
where f; = Unit white noise

i = Inverse time constant of Markov process
ciz = L-'[xiz] = Variance of frequency error

5. Time measurement correlated error

The error on the time measurement of arrival of markers in both re-

ceivers A and B is modeled as an integrated white noise (random walk).

In state form
Xi = Uifl (2.22)

6. Dynamic model

We can now get the plant equation by defining the states:

-

X = 8Ry teet

X, = 89, radians S ground receiver A
Xg = 80y radians )

xg4 = 0Rp feet 1

Xg = 66y radians > ground receiver B
Xg = Sy radians
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X-] = 6RS feet A

Xg = i7 feet/second

Xg = §0¢ radians

. f satellite

Xi0 = Xg radians/second
X = GAS radians
Xpq = ill radians/second
Xy3 = GfA Hertz oscillator in receiver A
X14 = 6fy Hertz oscillator in receiver B
x15 = 6fs Hertz satellite oscillator

X16 = Shy seconds clocks' synchronization error

Now, let the entire state model be
X=A +u

The nonzero elements of the matrix A are then

7,8 = 3,10 = 31,12 = 1
a = a = a = —'-‘2
By 77 %1007 31201 7
13,13 = “EA
314,14 = “f8
15,15 7 s

. )
where w =y~ and T is the period of the satellite.

The nonzerc driving terms are

u3 V20’8, £
2

U14 =V ZOB'SB f14

ups =V 205%85  f15

uig = o fig
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where f;'s are independent unit white noises.

This completes the dynamic model,

E. Measurement Model
1. Introduction

In order to use Kalman filtering the observables must be expressed
as linear combinations of the state vector components or state vectors if
the delayed state filter is to be used,

This linearization is done by first expressing the observables
(Doppler counts and time lag) in terms of range or range rate between re-
ceiver and satellite. Then the relationship between a small variation of
the observable and a corresponding variation of the range (p) is found,
Also the linear relationship between a range variation (8p) and a coor-
dinate variation (6R,86, SA) at either end is found by differentiation,
Finally, substituting, the variation of the observable is directly re-
lated through t
end points of the range between satellite and ground receiver., These
coordinates having been chosen as state variables, this last relation is
the needed link for the measurement equation of the Kalman filter.

gé Linearization coefficients

The linearized equation relating 6p and S8R, SA, 66 is obtained by
partial differentiation of p with respect to R, 6 and A and is given in

llartman and Brown (3).

=1 Z
80 = & [(R = RCyy JOR + RRCyz 61 - RRsCyy 86] (2.23)
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R, 8, A are the ground receiver coordinates

where
Ay ate the satellite coordinates

Rs) es’
szs’ CYZs’ Cyz. are the direction cosines of ground local

rectangular coordinate system x, y, 2 with respect to satellite local

rectangular coordinate system xg, yg, Zs.
The same relation may be applied to find the variation of the range
(2.24)

due to perturbations of the satellite coordinates Rg, 65, As.

=1 [ RC
So D l(Rs - Z52
are the direction cosines of the satellita2

where C C C
zgz? ys2’ XgZ

S
with respect to ground station.
Summing both linearized equations we get the total variation of the

range due to perturbations of both satellite and ground station coordi-

nates:

8p = ASR + Bée + CSA + DcSRs + Eées + FSAS

I S A R - Rchv- n . R.- - Rc'r >

WIlETC = R D=5 igl

g = " RRslxzg E = 'RsRstz

o] P
_ RRSCyzs L RSRCySZ
p

p

3. Equation for Doppler measurements
The measured Doppler count is proportional to the range difference
(2.25)

and is given in ovanseil (13).
N_= (£ - £ T + {l [o(ty) - p(ty1)] + &N

where AT = counting interval
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f = ground oscillator frequency
fg = satellite oscillator frequency
6N = uncorrelated count error
p(t) = actual range at time t
c = light velocity

The Doppler count predicted on the basis of the erroneous range

p + 8p is: _
N, = [f+6f-fs-6fs]ATt§[o(tn)+50(tn)-o(tn.l)-dp(tn-l)] (2.26)
where 8f = ground oscillator error
§fs = satellite oscillator error
. §p = range error

The input to the Kalman filter is:
Ne - N = _fE [80(ty) - 6p(tp-1)] - N - ATSf + ATéfg (2.27)
Replacing the 6p's by their linearizations in terms of the coordi-
nate errors on ground station and satellite we get:
Ne - Np = _;_ [A,6R, + Bé6y + C8hp
+ D 8Rgy + EndBgy + Frdhspy
" Ano18Ryp - Bpogden.g - Cpo18An-g

- Un-18Rg n-1 - En-1865,n-1 - Fp-18As p-1l
- ATSE + ATSf, - &N (2.28)

where Ay=Aatt=t,,B=Batt=¢t,, ... etc

and An_l =Aatt~= tn"l’Bn‘l =Batt= tn.'l’ . . . etc,
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These are the linearization coefficients correspanding to the
geometries at times th and t-1.
and 6R, = 6Rat t=1t,68 =g att=t,...etc
dRsn = 6Rs at t = tn, e« o o €tc,
We get two such equations, one for each receiver with corresponding

geometry coefficients,

4. Equation for time measurements

The time interval at which the same time mark transmitted from the
satellite is received in receivers A and B is theoretically:
=1 -
T r [OA DB] (2.29)

pp = actual range from satellite to receiver A

L}

pp = actual range from satellite to receiver B

C

light velocity

The measured time interval is:

T = _i_ [oalty) - pp(ty)] + &t + &1 (2.30)

41 = correlated time measurement error

6t = uncorrelated time measurement error
The correlated error is here mainly the error in clock synchroniza-
tion.
The predicted time interval is:
te = Lloplt) * b0y (ty) - op(ty) - dop(t)] | (2.31)
The input to the Kalman filter is then:
te = tn = = [804(ty) - Gop(ty)] - AT - 6t (2.32)
Replacing the 6p's by their linearizations in terms of the states

we get:
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-1
TC - Tm = -C- [AAn‘SRAn + BAn(SBAn + CAnél\An

+

- ABn(SRBn - BBndeBn - Cppéhpp
= DBn‘SRSn - EBnaeSn - FBnMSn]
AT - &T (2.33)

Where Ay Bpns Cpp o o o o o o o By are linearization coefficients

for the range from receiver A to the satellite at time t,. Ap., Bpy, Cp,
« « « + o are linearization coefficients for the range from receiver B
te satellite,

§_._ Measurement model

Knowing the measurement equations for Doppler counts and times we

can define the measurement vector:

Neatn) = Npa(ty)

y =WNep(tn) - Npp(ty) (2.34)
o (tn) - Tp(ty) |
where NCA(tn) = Ng for receiver A at t,
Nep(ty) = Ng for receiver B at t
Nna(tn) = Ny for receiffer A at t,
Npg(ty) = Ny for receiver B at t,
P B PR S _A_=,. B__..L F:L‘
Al 1oLl Ly - a; o Upjg o 0 o 5 o & o = 4+
ko A
LA - I3
c - 0') E - 8, e ¢ o & o » ¢ 'E’ = \f
we get a delayed state measurement equation of the form:

y = Mgy + Npxp ¢+ v (2.35)
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where SNp (2.36)

GNA = uncorrelated count error in A

o

=4
o
I

= uncorrelated count error in B

uncorrelated time error

8t
The state equaticn and the measurement equation just derived are
suitable for using a delayed state Kalman filter. The matrices M, and N,
and N, are shown in Fig, 2,3. Note that the delayed state model is re-

quired only because of the Doppler measurements,

I, Other Parameters for Kalman Filter

1, Transition matrix

The elements of the transition matrix are deduced in a routine

manner from the state equation,

T nee mamm - 1 Fmnn 2 T 5 27 A r
ley d1¢ @: - ~ 1 LOL 1 = 1.l ad.d.0.0

¢i,i = €os(w.al) for i = 7,8,9,10,11,12

= - -~ S1i A
¢7=8 = ¢9;10 = ‘Pll;lz = M

W

98,7 = 10,9 = 912,11 = - v Sin(w.4T)

913,13 = exp(-813.4T)
914,14 = exp(-874.4T)
¢15,15 = exp(-815.4T)
¢16,16 = 1

All other elements are null.
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2. Covariance matrix for white driven states

a, Markov processes: H;z 13, H 4,145 H 5,15 These are given in
2e =13,13» 21 -1
Brown (1):

H; =032 [1 - exp(-2854T)] (2.37)

“i,j =0

for all i # j since we assume the oscillators are independent.

b, Random walk: Hyg 34 From Parzen (11) we have
e R R 416,
=52 .
H16,16 o.“aT (2.38)
wheTe Ucz is the parameter of the Wiener process.

3. Uncorrelated measurement error covariance matrix

The measurement error covariance matrix is defined as

8Ny
V= E{ 8Ny [GNAcSNBGT]} = [vij] (2,39)
6T
where Vig = E(GNAZ) = variance of uncorrelated count error in
receliver A
Voo = E(GNBZ) = variance of uncorrelated count error in
receiver B
Vgg = Ij(érz) = variance of uncorrelated time measurement
error
v, = Vg1 = E(8NASNg) = r[E(6Np2)E(8up?)]11/2 (2.40)

where r is the crosscorrelation between time uncorrelated count errors in
receiver A and receiver B.
Also Vi] SV3p = Viz = V23 = G

assuming count errors and time errors are not crosscorrelated,



26

4, Initial estimation error covariance matrix

a. States describing receivers position Assuming all original

estimates of receivers coordinates are not crosscorrelated and about 100

feet r.m,s. we have

Py = 1002

P2,2 = pl,l/RAOZ

Py 5 = Pl’l/(RAocoser)Z

Py g = 1092

P 5 = P4,4/RBOZ

P6,6 = P4, 4/ (Rg cossy )

Pjj=0forallifj - fori=1,2,34,5,;6

j=1,2,3,4,5,6

where RAO = original estimate of R,

qu = ofiginal estimate of 6y

and Ry and 6y are the original estimates for Rp and 6p.
Y v

b. States describing satellite position Assuming 30 feet r.m.s.

position error in cross track, along track, and radial satellite coordi-
nates (6) we get

= 708
P7'7 30

D - D 2
£8,8 = £7,7%
Pg,g = 302/R *

_ 2
P10,10 = Po,9v

= 702 2
Pll,ll = 30 /(RSOCOS BSO)

B} 2
P12,12 = P11, 11
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n

where Rs, original estimate of Rg

65, = original estimate of &g

Assuming the original errors on all three coordinates of the satel-
lite are independent and also using relation (2.20)

Pi,j =0 for all i # j i=7,8,9,10,11,12

(satellite states)
7,8,9,10,11,12

I

]

c. States describing oscillator and clock errors

P13.13 = E[éfAz] = variance of oscillator correlated error in A
’

Pyg 14 ° E[éfpz] = variance of oscillator correlated error in B
A ’A A
PlS,lS = E[éfsz] = variance of oscillator correlated error in

satellite

p16,16 = °c2° T = variance of synchronization error between clock
in receiver A and clock in receiver B and Tf is
the time elapsed since the clocks were last
synchronized,

Assuming the original estimates of receiver positims, sateliite

positions, oscillator and clocks synchronization errors are independent:
all other P; . =0

1,j

We now have all the elements to use a Kalman filter,
E_ Remarks

The count errors in receivers A and B are partiy caused by propaga-
tion errors., Therefore one would expect the crosscorrelation between the
count error in A and the count error in B to increase as the receivers
are brought closer to each other because of the increasing similarity of

the two respective propagation paths, The model does not take this into
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accont intrinsically. The crosscorrelation can be changed externally
and simulation runs showed that this crosscorrelation does not signifi-
cantly affect the system performance.

When the system uses two satellite passes it has been assumed it was
two different satellites. This is less favorable than using the same
satellite twice since then one could have a better estimate of the satel-
lite oscillator error. At the beginning of a second satellite pass all
elements of the error covariance matrix corresponding to satellite states
(coordinates and oscillator error) are reset to the original value they
had at the beginning of the first pass, and their crosscorrelaticn with
other states is reset to zero.

The variance of the clock synchronization error is increased by an
amount equivalent to 1 and 1/2 hours «f random walk, its crosscorrelation
with the states describing the rec: :v27< coordinates being maintained the
same,

9; Numerical values for error sources i1 measurements

The numerical values for the sources of error are approximate and
claim only to be realistic if not exact,

The satellite oscillator is of crystal type and its offset is as-
sumed to be 25 Hz r.m.s. The receiver local oscillators are assumed to
be piloted by the atomic clocks. For a Cesium clock the frequency sta-
bility is of the order * 10-11 for life (8). Then this means a frequency
offset of 4 x 10°3 Hz r.m.s for a 400 Miz oscillator. All oscillator
offsets are modeled as Markov processes of long time constant compared to
the duration of one satellite pacs, The time constant is not critical

and is set to be 109 seconds,
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The time synchronization error between both clocks is modeled as a
Wiener proéess of parameter ¢ = 5 x 1011, This value was deduced from
data given in (8).

The Doppler count uncorrelated error is due partly to residual re-
fraction error remaining after correction. From past experience with
Doppler navigation satellites (6) we assumed here 10 counts r.m,s due to
propagation and 10 counts r.m.s due to other sources, This means about
15 cowmnts r.m.s all together and a crosscorrelation between count error
at both receivers of about 0.5 assuming it is due to the propagation
errors and that both paths from sateilite to receivers are close and have
very similar refractions. |

The fractional frequency stability of atomic clocks is 10°1! r,m,s
for averaging times of 1 to 60 seconds. Then the time error introduced
in measuring an interval of about 20 seconds is 20 x 10711 sec r.m.s.
This is negligible compared with the time error introduced by the resid-
ual refraction errors. The contribution of refraction errors to time
error can be arrived at from the 10 counts r.m.s we took‘fpr th¢ qupler
error, It corresponds to ten periods of the 400 Mliz signal or 0.25 1077

sec r.m.s. Since we have two receivers and allowing for other sources

Cv1ﬂ’8 cnr o £ rATYro ima
5 X av se¢ r.m.s of uncorrelated time measursment error seems re 1

ble,

In summary, the assumed parameters for measurements errors are:

a. Dynamic model

BA = BB = BS = 10-8 SGC-l

]

op = op = 4 x 1073z
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ag 25 Hz

5 x 10°11

Oc

b_._ Measurement model

E[6NA%] = E[6Ng?] = 200
E[6Np6Ng] = 0.5 E[6Np?]
E[672] = (5.0 x 10-8)2

G. Simplified Translocation System
As it will be explained later in Section III.D, experimental results
of simulations indicated it would be worthwhile to investigate a system
which would not take into account the satellite position errors. We now
give the model for such a system,
The state variables fer this simplified system are:

~

X, = &R

1 A
Xy = 86 rreceiver A
Xz = 6Ap ;
Xq4 = 6Ry
Xc = 883 breceiver B
Xé = (SAB )
Xq = 60y clocks synchronization error

The simplified system also neglects clocks drifts and therefore see
all the states to be estimated as biases thus simplifying the computa-

Dynamic model: Xp41 = Xp (2,41)

Measurement model: Yp = Mg t v (2.42)

My = [oa, BAn YAn -®Bn ~8Ba -Ypn -1] (2,43
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The Kalman equations (standard filter) reduce to:

by = P T OPre T+ Vi) (2.44)
Xy = o1 * b0 - M) (2.45)
P = Py_q - by OPno ! + Vidby! (2.46)
or Py= (I -bM)P (I -bM)T +bvbT (2.47)

The actual estimation errors of the simplified system are obtained
by considering it to be a suboptimal filter for the full model including
satellite position errors and clocks drifts, A simple way to do this in

this particular case is shown in Appendix A,
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I11. SIMULATION RESULTS

A, Introduction

A1l simulation runs use two passes from different satellites, Each
is from north to south and their subtracks are separated by 1300 miles at
the equator, The receivers are both in the vicinity of a point halfway
bstween satellites subtracks and 30 degrees latitude north, In each pass
the receivers make 36 sets of Doppler and time measurements which are
used by the Kalman filter, Since no inertial sensors are used, the
accuracy of the system is mainly determined by the relative position of
the receivers with respect to satellite (or satellite subtrack) and not
function of the bosition of the receivers on earth,

A first simulation run was made and was used as a reference for com-
parison with all other runs. In the reference run the two receivers are

50 miles apart, 25 miles east and west of a point halfway between the

subtracks. All parameters are as described in Section

TT.F.6. The
crosscorrelation on time uncorrelated Doppler count errors is sef to 0.5,
We want to compare three systems:
a) Using Doppler counts only (conventional Transit)
b) Using time measurements only
¢) Using both types of measurements
For convenience they will be called Doppler system, Time system and
VDoppler and Time system respectively,
Fig. 3.1 a,b,c and 3.2 a,b,c show the decay of the estimation errors
for all three systems and it altitude, latitude and longitude for two

passes (first pass is from first iteration to 36th, and second is pass
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from 37th iteration to 72nd). The r,m,s values of the position errors in
altitude, latitude and longitude, for the three systems, at the end of
cach pass are shown on Table 3.1.

Table 3.1. Expected position errors after one satellite pass and after

two satellite passes, for nominal values of parameters (refer-
ence run)

Altitude Latitude Longitude
Satellite pass 1st 2nd 1st 2nd 1st 2nd

Time and Doppler measurements

Absolute A 82.7 66.6 67.0 63.0 83,1 64,0
Absolute B 84.9 66,7 68,4 63,0 81.8 64,1
Relative 99,8 38.3 21,9 9,2 94,7 8.9
Time measurements only

Absolute A 85.6 73.2 70,7 69.8 85.6 70.8
Absolute B 87.7 73.3 72,3 69.8 84.5 70,8
Relative 100.2 39,3 22,0 9.2 94,7 8.9
Doppler measurements anly

Absolute A 91.4 83.5 78,9 71, 92.2 83.1
Absclute B 02.4 83.5 79,0 71.6 2.0 8z,1
Relative 125.1 107.4 85.6 65.8 125.3 106.2

This table shows that the Time system does a little better than the

Doppler system for absolute positioning, and the Time system is much

The above demonstrates that when using both types of measurements
there is some improvement for absolute positicning, while for relative
positioning the time measurements give much better results and make the

Doppler measurements worthless.
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B. Influence of Crosscorrelation
Two runs like the reference run were made where the crosscorrelatim
in Doppler counts was changed to 0.0 and 0.9. The results are shown in
Table 3.2, and they show that the conclusions made from the reference run
remain valid, The Time system is not dependent on this crosscorrelatio
so it is not shown in these tables, The relative positioning accuracy of
the Doppler system improves as the crosscorrelation increases.

Table 3.2. Influence of the crosscorrelation between the Doppler cownt
errors in both receivers

Altitude Latitude Longitude
Satellite pass 1st 2nd Ist 2nd 1st 2nd

Crosscorrelation = 0,0

Time and Doppler measurements

Absolute A 81.9 64.5 65.4 60.4 82,3 61.7

Absolute B 84.0 64.5 66.8 60.4 80,9 5147

Reiative 06,0 38.8 2i.5 5.2 S4.7 8.6

Doppler measurements only

Absolute A 92.8 86.3 82.7 74.1 93.5 86.0

Absolute B 93,7 86.3 83,6 74,1 93,3 86.0

Relative 131.3 121.0 103.1 84.3 131.2 120.1
Crosscorrelation = 0.9

Time and Doppler measurements

Absolute A 82,7 67.2 67.6 64.1 83.4 6542

Absolute B 84,9 67.3 69.1 64.1 82,2 65.2

Relative 98,3 34,7 21,7 8.9 94,4 8.8

Doppler measurements anly '

Absolute A 86.1 72.9 71,0 66.8 87.8 72,6

Absolute B 87.8 72,9 72,5 6€.8 87.4 72.6

Relative 108.7 65.5 48.3 32,7 110.2 64.3




41

Table 3.3. Influence of the distance between receivers (receivers 5 miles
apart

Altitude Latitude Longitude
Satellite pass 1st 2nd Ist 2nd 1st 2nd

Time and Doppler measurements

Absolute A 83.7 66.8 67.7 63.8 82.5 64.1
Absolute B 83.9 66.8 67.8 63.8 82.4 64.1
Relative 99.8 38,2 21,8 9.1 94.6 8.5
Time measurements only
Absolute A 86.6 73.4 71,5 70.9 85.1 70,8
Absolute B 86.8 73.4 71.6 70,8 85.0 70.8
Relative 100,3 39,3 21,0 9.2 94.6 8.5
Doppler measurements anly
Absolute A 91.9 83,6 79.4 71.6 92.1 83,1
Absolute B 92.0 83.6 79.5 71.6 92.1 83.1
Relative 125.1 107.5 85.6 65.8 125.2 106.2
Table 3.4, Receivers north-south of each other

Altituae Latitude Laigitudc
Satellite pass Ist 2nd 1st 2nd 1st 2nd
Time and Doppler measurements
Absolute A 83.7 66,6 67.7 63.5 82.3 62.8
Absolute B 84.0 67.0 67.6 63.7 82,5 63.3
Relative 100.0 39.1 22,0 9.3 94,2 8.5
Time measurements only
Absolute A 86.5 73.3 71.5 70.5 84,9 69.2
Absolute B 86.8 73.0 71.4 70,8 85.2 69,7
Relative 100.4 40.3 22,1 9.5 94.3 8.5
Doppler measurements only
Absolute A 01.9 83.5 79.4 71.5 92.0 83.0
Absolute B 92,0 83.7 79.4 71,6 92,2 83.2
Relative 125.1 107.5 85,7 65,9 124,7 105, 8
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Tables 3.3 and 3.4 show that the result; are essentially the same if
the two receivers are closer to each other or spread in the north-south
direction instead of east-west, Therefore independently of the re-
ceivers' relative positions, for a distance of the order of 50 miles be-
tween receivers, the conclusions remain the same as for the reference
run. The Time system is a little better for absolute positioning but not
very significantly considering the lack of accuracy on fixing the param-
eters of each error source in the Doppler measurements and time measure-
ments. For relative positioning the Time system is much better than the
Doppler system. Using both time measurements and Doppler measurements is
equivalent to the Time system for relative positioning and a little

better for absolute positioning.

C. Satellite Pass Geametry and Estimation of Position

The satellites are assumed to be in polar circular orbits. In prac-
tice they are only in near circniar arbits but this approximation does
not change significantly the bearing of satellite position errors on the
estimates of the receivers position errors,

The pass geametry is related to the receiver position estimate
errors and also to the relative magnitude of these errors in altitude,
latitude and longitude.

From the linearization equation (2.24) one can consider the part of
range variation due to variation of the receiver coordinates alone., Or:

60 = ASR + B&6 + CéA
This can be rewritten in terms of variations in feet in vertical, east-

west, and north-south directions using the lccal coordinate system for
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the receiver,
§p = A'8z + B'éx + C'éy

These coefficients give directly the variation of the range in feet
caused by variations in either direction in feet and are plotted for the
two passes in Fig, 3.3. These express how sensitive the range is to
variations of receiver coordinates in any of the three directions.,

The decay of the estimation errors in feet in all three directions
for conventional receivers using Doppler counts alane, for receivers
using time measurements and receivers using both is shown in Fig, 3.1
a,b,c for absolute position of one receiver and Fig, 3.2 a,b,c for the
relative position of one receiver with respect to the other, These
curves show that after one pass {36th iteration) the latitude error is
much smaller than the altitude or longitude errors. The plot of the
linearization coefficients shows that the coefficients corresponding to
altitude and longitude are of comparable magnitude and vary in a similar
fashion during the first pass. Then the estimator cannot separate ane
from the other, and it gives a poor estimate for both., With the second
pass on the opposite side of the receivers (37th to 72nd iterations), the

longitude coefficient changes sign. Then for both passes together all

separate the errors in all three directions. This illustrates the fact
that the distribution of the uncertainty in position between the three
directions is mainly a question of the geometry of the satellites passes
and that some insight into it can be gained by directly looking at the

linearization equation used in the modeling, This also implies that if
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the altitude is initially known accurately then the system will give a
better estimate of the longitude, and vice versa, a good initial estimate

of the longitude enables the system to give a better estimate of the

altitude,

D. Simplified System

It has been noticed that using time measurements alone gives good
results for relative positioning, As part of its operation the Kalman
filter estimates the satellite position errors, but the improvement it
makes on their original estimates is very small, The decay of the vari-
ances corresponding to states describing satellite position errors is
less than one per cent in one satellite pass. Therefore a simplified
system using time measurements alone but which would not estimate the
satellite position errors should perform about as well, The model for
such a system was given before in Section II.G, and, like the Time sys-
e, 1t does noi require a delaycd siaie Ralman riiter, Also, the systcii

state vector is reduced from thirteen to seven elements which yields

fied because the dynamic model is trivial involving only states which do
not vary with time,

ig. 3.4a and b show the performance of the simplified system for
circumstances identical to those of the reference run., Comparing these
plots with those for the Time system shows that there is no appreciable

" loss of accuracy in either relative or absolute positicning.
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E. Clocks Synchronization Error

One interesting aspect of the Time system or the Simplified system
is that it is not necessary to have a good synchronization between the
clocks in both receivers.,

A simulation run was made where the original expected synchroniza-
tion error was very high, 107 times the value used in the reference Tun,
and the performances of both the Time system and the Simplified system
were not significantly affected. This is because during a satellite
pass the synchronization error is practically a constant which is easily
estimated by the Kalman filter and accounted for in the estimation of
positions, This results in an apparent "self alignment" of the clocks
which suppresses the synchronization problem all together,

[, Satellite Position Error

It has been mentioned that when using two receivers for relative
positioning, satellite position errors tend to cancel out and have little
bearing on the relative position error, Also, when using time measure-
ments one can expect little influence of satellite position error on
relative position error of the receivers since the time lag measured is
much more sensitive to relative motions of a receiver with respect to the
other than it is to comparable motions of the satellite. This is checked
by a simulation run where satellite position errors were raised to 300
feet r.m.,s for cach coordinate instead of the 30 feet r.m.s used in the
reference run, The accuracy is slightly reduced, more so for the simpli-
fied system than for the Time system as shown by Table 3.5. More sur-
prisingly this table shows that the absolute position estimates are aiso

/
practically unaffected by the satellite position error,
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Table 3.5. Position errors for Time system and Simplified system for high
original uncertainty on satellite position

Altitude Latitude Longitude
Satellite pass Ist 2nd 1st 2nd 1st 2nd
Time system
Absolute A 86.4 73.4 70.9 70.1 87.8 70.9
Absolute B 88.3 73.4 72.4 78,1 87.7 70.9
Relative 102,7 40.6 24,2 9.69 103.9 12,2
Simplified system
Absolute A 86.4 73.4 70.9 70.3 87.8 71,0
Absolute B 88.3 73.4 72.4 70.3 87.6 71.0
Relative 102,7 40,6 24,2 9.73 103.9 13
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IV, CONCLUSION

The goal of this study was to find out how much improvement could be
expected, when using time nmeasurements in addition to the Doppler meas-
urements normally found in Transit systems, when two receivers are used
for geodesy.

Simulation runs indicate that there should be a great improvement in
accuracy both for absolute and relative positioning. In the case of
relative positioning, Doppler data could be left out entirely since sim-
ulation indicates that using time measurements alone gives nearly as good
results as using both time and Doppler measurements. This would simplify
the receivers and the associated data processing.

When using time measurements only, simulation shows that neglecting
the satellite position errors in the filtering process does not signifi-
cantly affect performance. This could further simplify the software part
of the sysieii,

A striking result is that accurate synchronization of the clocks is
not r.ecessary,

Then the main difference in the implementation of a system using
time measurements compared to one using Doppler measurements is the extra
two clocks. Precision Cesium clocks are relatively expensive but might

well be feasible in many surveying applications.
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VII. APPENDIX A:
SIMULATION OF SIMPLIFIED SYSTEM

The model for the simplified system is given by equations (2.41, 42,
43) and its filter algorithm by equations (2.44 to 2.47).

Since we need the full model to get the actual errors of the simpli-
[ied system it is simpler to simulate thc simple system using the pro-

gram for the full system, Consider the partitioned system:

X I 0 X (A1)
= dynamic model
XZ 0 0 XZ
y = (.‘-Il,\lz) [x1]+ v measurement model (A.2)
X
Pn- 0 0 0
let D oy=| ! and 1 =
0 0 0 0
ThAav jsn3nme Valmnn AmaessAance Ana aatce
4482 uoulb AN RN Y'Y V\lWA\—.L\MA.I a4 aw b\d\-u
o T T 1
b, P ,,1.-1 (Mlp - "11 + V)
b, = ] _ (fn-171 n-1 (A.3)
b, 0
r T 3
(I - byMIp., (I - byM)T + bV 0
P = 1'1’*n-1 171 1'1 a4)
0 0]

by is the same as given by equation (2.44) and the upper left comer of
P, is the same as given by (2.47). Therefore the above behaves like the
simplified system using the same Kalman equations (including full meas-
urement equations) as the full system, the only difference being the

initial P and H matrices, ‘lhen we can use two sets of error covariance
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matrices, one for the error seen by the simplified System and one for the
actual errors and cycle them through the same Kalman recursive equations

in the following manner:

1) Compute the suboptimal gain b, from error covariance matrix seen
by the simplified system using (2.44).

2) Update the error covariance matrix seen by the simplified system
using (2.47).

3) Update actual error covariance matrix for full system using

(2.11) and compute actual estimates of position errors of simplified

system,
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VIII. APPENDIX B:

ROUND-OFF ERRORS

The recursive equation for the error covariance matrix is P =

(1 - bnMn)Pn_l(I - bn.\in)T + b,Vb T. One way of computing is as follows:

compute: bnhgl
then: (I - byHy)
then: (I - b1 (1 - i) T + bvb, !

This causes round-off errors to make the covariance matrix very un-
symetrié and make the simulation invalid, This happens because elements
of P .1 are much greater than elements of bpMPn.1 with which they are
added in both pre and post multiplications., Separating smaller and

bigger terms alleviates this., We rewrite:

> = - - T T
Pn = Pnog bpMnln-1 - Pn-1Mn b
o ove \ITLT.LYY‘.IF
- Un‘}rll n_li'ln Un v Unvl)n
The above products arc computed beforc summing and nonsymmetry is
generated by the fourth term alone, Sc doing the relative difference be-
tween corresponding off-diagonal terms in one step of computation is less
than 0,01%, compared to more than 100% using the first method, before it
is symetrized by doing:

new Do = Tij v Py

ij & =
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IX, APPLENDIX C:

COPULER PROGRAM LISTING FOR REFERENCE RUN
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T/

C VARIANCE ANALYSIS OF SURVEYING SYSTEM USING SATELLITES
IMPLICIT REAL*8(A-H,0-Z),INTEGER(I-N)
INTEGER DCP,CLCC
REAL®8 MN1,MN2o,NN1yMByNMPHyMHyLAMBDI
DIMENSION P(1641€)4PC(16416)4PC(16,416)
COMMON FCL{3,3)9A{3,3,31i

1)yNN1(2,16)yMN2(1,416)},AC(6),LDUM
CCMMON /KAL/VNL1(24y2)9yH(16416),VN24PHI( 16416)4MNL(2,16

C

C...Q...........l.ol.......NON TIME VARYING ELEMENTS........

C NUMBER CF ITERATIONS IN ONE SATELLITE PASS
NUMIT =3¢

C FENTER CONSTANTS
0T=20.0C0
RE=2.092%74 DC7
GM=0414C7£54D17
PCL(1,3)=RE+600.0D00%608C.0D0
OMEGS=CSCRTIGM/PCL(1,3)%%*3)
CMZGA=7,29z115C-5
PI=2.,14592€535€S793D0
FEET=6C8C.0DO
RAD=PI/180.000
CELI=0.3048C0/3.00D8
LAMBDI=400.0D6*CEL1

C ORIGINAL CRCUND STATICNS COORDINATES ESTIMATES
TETAO=3C.CDO*RAD
POL(151)=2.092E574DC7
PCL (2, 1)=TETAQ+25.0C0*%FEET/POL(L1,y1)
POL(3,1)=0.0D0
POL{1+21=2.052574007
POL(2,2)=TETAO-25.000%FEET/POL(1,1)
POL(3,2)= C0DC
R13=1.0C-8
B14=B113
B15=813 :

C CORRELATEC FERROR VARTIANCES
VM13= 4,0C-3%%2
VM14=VNM]2
VM15=25.0C0%*2
VM1€=5.0C-11%*2

C UNCORRELATEC ERROR VARIANCES
VW13=2,(CD2
Vhl4=VW13
VW16=5.00-8%%2

C INITIALIZE MATRICES
DO 105 I=1,16
DO 105 J=1,16
P{I.J})=C,000
PHI{I,J)=C.0DO
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H{I,J)=C.CDO
IF(1.GT.1) GJ 7O 103
MN2(1,4)=0.900
103 IF(1.GT.2) GO TG 105
MN1(I,J)=C.0DO
NN1(IsJ)=C.0DO
105 CONTINUE
C COMPUTE WHITE DRIVEN STATES COVARIANCE MATRIX
H{13,13)=VM13%(1,0DC~-DEXP(-2.0D0%B13%CT) )
H(l4y14)=F(13,13)
H{15,15)=VM15%(1.0D0-DEXP(-2.0D0%B15%DT) )
H(16y1€)= VM16%DT
C COMPUTE TRANSITION MATRIX PHY
CO 110 1=1,46
110 PHI(1,1I)=1.0D0
£O 112 I=7,12
112 PHI(I,I)= DCOS(CMEGS*DT)
D0 114 1I=7y1142
114 PHI(I,I+1)= DSIN(OMEGS*DT)/OMEGS
N 116 1=8412y2
116 PHI(I,I~-1)= -DSIN(OMEGS*DT)*0OMEGS
PHI(13,13)= DEXP(-B13%CT)
PHI (14414)=PH1(13,13}
PHI(15415)=PHI{13,13)
PHI(16,1€¢)= 1.0D0
C INITIALIZE ERRCR CCVARIANCE MATRIX
P(ly1)=1.CD4
P{242)=F{1y1)/RE®*%2
P(343)=P(Ly1)/(REXDCOS(PCL(2,1)))%%2
Vi&.4)=1.0D4
P(595)=Pl4,4)/RE**2
PlEy6)=P(4y4)/(REXDCOS(POL(252)) ) %%2
P{7471=30.,000%%2
P{8¢y8)=CMEGS*CMEGS*P(T,7)
PiSs91={30e000/PCL {1430 i%%2
P(10,10)=CVEGS*DOMEGS*P(9,9)
P(11,1131=(30.0D0/(POLEY;3)*DCOS(TETAO-CMEGS®XNUMIT*10.
1000)) ) %**2
P(12,12)=P{11411)%CMEGS*CMEGS
P{13,13i=VM13
P(l4,14)=VM14
P(15;15)=VvM15
P{l6,16)= VM16%3€.0D2%24%3Q
C PC COVARIANCE MATRIX CLCCKS ALONE; PD DOPPLER ALONE
DO 130 J=1,16
CC 130 1=1,16
PD{TI+Ji=P{I,J}
130 PC{I, J¥=P(1,J)
C CCMPUTE MEASUREMENTS ERROR COVARIANCE MATRICES
COR=0.5DC
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VN1(1y11=VW13
VN1(1,2)=COR*VW13
UN1(2,1)=VUN1(1,2)
UN1({242)=VW14
VN2=VW16

seesssccess T IME DEPENDENT
SLAV= . 156D0
NPASS=C

8 NPASS=NPASS+1
LOUN=0
T=-NUMIT#10.000

10 T=T+DT
LOUM=LCLM+]

SATELLITF CCORDINATES

POL(2,3)=CMEGS*T+TETAO
POL(3,43)=—CMEGA*T+SLAM
COMPUTE MEASUREMENTS MATRI

62

COMPUTATIONS............I..'.

CES

STORE PART CF OF CLD MN1 AS NEW NN1

DO 210 1I=1,2
00 210 J=1,11
210 NNI(I9J)=-MN1{I,J)

CCMPUTE NEW MEASUREMENTS MATRICES

215 CALL CCEF

MN1(1,1)=A(1,y1,3)%LAMBDI
MNL1(1,2)=A(2,193)%LAMBDI
MN1(1,3)=A(3,1,3)%LAMBDI
MN1(Ll,7)=A(1,3,1)%LAMBDI
MN1(199)=A02,3,1)%LAMBDI

MAIT £1 11V =-AI2 72 1T haet AMONT
FINANRL Y LA THM VI Y LY VRANILDWVG

MN1(1,12)=-DT7
MN1(1,1Z2)=DT
MNL(2y4)=A01y2,31%LAMBDI
MN1(2,5)=A{24293)%LAMBDI
MNL{2,6)=A13,2,3)}%LAMBDI
MN1(2y71)=RA(1y392)%LAMBDI
MN1(245)=A(243,2)*LAMBDI
MN1(2,11}=A(3,2,2)%LAMBDI
MN1(2,14)=-DT
MN1(2,15)=DT
MN2{1,1)=A{1,1,3?=%CELI]
MN2(1,2)=A(2,1,2)*CELI
MN2(1,3)=A(3,1,3)%CELI
MN2(1:4)=-A(1y2,30%CEL]
MN2ELls5i=-A(2,2,3V=CELI
MN2 (1:6)=-A(3;2,3)*CELI

MN2(Ly 71=0A{1y3410-A(1,3,2))%CELI
MN2(1,G)=(A(2:3,1)-A(2,3;2))%CELI
MN2{(1,11)=(A(3,3,1)-A(3,3,2))%CELI

MN2{1,16)=-1.000
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C LINEAR CQEFS FEET TC FEET

1215

500

C

3175

AC{1)=8(141,3)

AC(2)=A(2,41,3)/RE
AC(3)=A(3,1,3)/RE/DCOS{POL{2,1))
AC(4)=A(1,2,43)

AC(5)=A(29293‘/RE
AC(6)=A(3,243)/RE/DCOSI{POL{2,2))
WRITE(6,41215V(AC(I),1=1,46)
FORMAT(' ',T13,6015.4)

COMPUTE NEW COVARIANCE MATRICES
CALL KALMAN(l,1, P}

CALL KALMAN(0O,1,PC)

CALL KALMAN(1,0,4PD)
IF(LOUMLLT.NUMIT) GO TO 10

IF (NPASS.EQ.2) GO TO 500

C REINITIALIZE FPART OF COVARIANCE MATRIX FOR NEW

D0 380 J=1,16

DO 380 I=1,J

IFLJ>LE.€) GO TO 380
TF{J.CF.7.AND.J.LE.12.0R.J.EQ.15)}GO TO 375
IF(I.LE<6) GO TO- 380
TF(1.EQ.13.0R.1.EQ.14.0R.1.EQ.16)G0 TO 380
P(I,J)= C.ODO

PC(1,J)=C.0DO

PC{I,J)=C.000

380 CONTINUE

P(T797)=30,0C0%%2
P(8y8)=CNEGSXCMEGS*P(7,7)

P{10s10)=CMEGS*CMEGS*P(9,9)

SATELLITE

P{11411)=(30.000/(POL{143)%DCOS{TETAO-OMEGS*NUMIT*10.

10D0#d)*22
P(12912)=P(11411)%0OMEGS*CMEGS
Pi{L59151=VML5

P (1641€1=P (16:;16)+VM16¥3€,0D2%2.0D0
PCE1691€)=PC(16,16)+VM16%*36,002%2.000
PDU16,16)=PC116,16)4VM16*36,002%2.000
DO 390 I=7,415

IF(I.EQ.13} GO 7O 390

TF(I-EQ.14) GO TO 350

PO(I,I)=P(I, 1)

PC(I,IV=P(I,I)

390 CONTINUE

DO 295 I=1516
00 395 J=1,!1
P{l,Ji=P{J,yI}
PC(I,J)=PC(J, T}
PCLIyJ¥=PCLJ,1)

365 CONTINUE
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SLAVM=-,1G€CO
GO TC €

500 STOP
END

SUBROUTINE KALMAN(DCP,CLOC,P)
THIS SUBRCUTINE CCES ONE STEP OF KALMAN ALGORYTHM
IMPLICIT REAL*8(A-H,0-Z), INTEGER(I-N}
INTEGER CCP,CLCC
REAL®B MN1yMN2yNN1yMByMPHyMH
DIMENSICN COV(9)4MB(2,18)4MPH(2,16)yPHIT(16,16]),
10UM1C 2,16),DUM20 2416)4QP(2,2)4MH(2,2)4QN(242),
20UM3( 1€, 2),STA(S) LGNI(2,2)
3P(16416)9BQ(1692) 4yBN1(1642)yPHIP(16416)4PPPT(16,416)
COMMCN PCL(343)4A(343,3)
CCMMCN  /NAT/NyJNy UM
COMMON /KAL/VN1(242)43H{16416)5VN2,PHI( 1641&),MNL(2,416
1),NN1(2,16)4MN2(1,16),AC(6),LDUM
EQUIVALENCE(MPH,CUM1,DUM3,BQ ),{MB,BNL},(PHIP(1),
1DUM2(11})
399 FORMAT(' 9,2(T73,8D16.9/1)
N=16
IN=T7
JM=12
C SKiP DOGPPLER CCUNT AT LDUM=
IF(LDUM.EC.1) GO T0 400
CecvaooePROCESS DOPPLER CATA BY STUVAS'S ALGORYTHMeososooe
CALL FOSTN;T( MN1,PHI,MPH,2)
IF (DOP.EC.0) GO TO 3061
DO 302 I=1,2
DO 302 J=1,16
MB(TyJ)=NMPH(I,J)+NN1(I,J)
DC 30¢ I=1,2
DO 303 J=1,16
DUBL1=C.0CC
DUB2=0,0CC
DC 201 K=1,16
DUB1=DURL+MB(I 4K} *P(KyJ)
301 CUB2= CUB2+MNI{I,KI2H{KyJ}
DUML(I,J)=DUB1
303 DUM2(1,J)=DUB2
DO 306 L=1,2
SUM=0,CLC
B2 305 J=1,16
305 SUM=SUM+DULML{TJIFMBIL e JI+CUM2IT JI=MNLILyJ)

1 1ICcTOCT uB
4 Vi ana [ ™

W
o
(A
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306 CN(I,sL)=SLM+VNI(I,L)
C COMPUTE GN INVERSE =QNI
DUB=QN{ 1, 1)%QN(2,2)-CN(2,1)%*QN(1,2)
CNI(1,1)= CN(2,2)/0UB
GNI{l,2)= - GN(1l,2)/0DUB
CNT(2,13=-CN(2,13/0U8B
QNI{242)= CN(1,41)/DUB
3061 CALL PREMT(PHI,P,PHIP,16)
C COMPUTE PHT TRANSPGCSE
DO 365 I=1,16
. COo 365 J=1y16
3¢5 PHIT(I,J)=PHI(J,1I)
CALL PFCSTNMT(PHIP;PHIT;PPPT;16)
IF (DOP.EC.O0) GO TO 3280
C3 350 I=1,16
CO 350 J=1,2
SUM1=0.CCC
CO 345 K=s1,16
345 SUNML1= SUML+PHIP(I K}*MB(J,K)+H(I,K)*MN1(J,K)
350 CUM3(I,J)=SUM]
v CCMPUTE XKALNMAN CAIN (DCPPLER )
CO 3&0 I=1,16
00 360 J=1,2
SUM1=0.CCC
0O 355 K=1,2
355 SUMI= SUMI+CUM3(T,K¥*CNI(K,yJ)
3€0 BN1(I,J}= SUM1
C CrMPUTE TRRCR CCVARIANCE MATRIX AFTER USING DOPPLER DATA
380 BC 287 I=1,16

TE NND _ECc NY N TN 2QE8
an VoUuY ewneVvr Uw TU 0SS

00 385 J=1,2

DUVM=0.0CO
CD 384 K=1,2
384 DUM=CUM +BNL1(I,K)% CN(K,J)

385 BQ{1yJi=DUM
3855 DO 387 L=1;16
SU¥=0.0C0O
IF (COP.EC.Q) GC TC 3861
DO 386 J=1,y2
38¢ SLH=SUM+ BQ(I,JI*BN1(L,J)
3861 P{IsL)=-SUM+H(TL)+PPPT(I L)
IF (CABS( P(I,L})-1.0D-25)388,388,387
388 P(I,L31=C.0CO
387 CONTINUF
400 WRITE(€,4990% CLOC,CLOC,CLOC,CLCC,0CP,00P,D0P,D0P,4LOUM
4960 FORMAT('0'yT10,'CLOCKS:"9411,T30,"'DOPPLER:"411,T50,
19ITER:%,12)
IF (DCP.EC.0) GO TO 401
WRITE(E43GS)(P(I9I)yI=1416)
IF {(CLCC.EQ.O0) GO TO 430
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Ceees PROCESS TIME MEASUREMENTS BY STANCARD ALGORYTHMeceosse
401 DO 405 J=1,16
Cury=0.CCC
DO 404 K=1,16
404 CUN=DUM + P{JyKI*MN2(1,K)}
405 DUM3(J,1)=DUM
CCM=0.CDC
CO 410 K=1,y16
410 DONM= DCM+MN2(19K)*DUM3(K,y1)
DUM=DCNM+VAN2
CO 412 J=1,416
412 DUM3(J,2)=DUM3(J,1)/DUM
C ERRQOR COVARIANCE MATRIX AFTER USING CLOCKS DATA
DO 420 I=1,16
CO 420 J=1,16
420 P(I4J)= P(I,J)— DUM3(I,2)1%DUM3(J,1)
CO 440 I=1,16
DO 440 J=1:1
P (I,J)=(F (I,J)+P (J,I))/2.0D00
IF{CABS(P(I9J))elT.1.0D0-25)P(1,4)=0.0D0
P (JyI¥=2 (I,J)
440 CONTINUE
WRITE(€,3SGY(PL{I,I0,1=1,16)
C.'........ENC n: KALMAN COMPUTATIUNS.................
C CCMPUTE CCVARIACES IN FEET**2 UP,NORTH,EAST
430 CC21=CCLE{rDL (2y1))
2C22=DCOS(POL(2:2))
PCL11=PCL(Ly1)%*2
POL12=PCL(L,2)%%2
CCv{l})=P(1,1)
CCvizi=Pizyzi=PlLlil
COV(3)=P(2,3)%POL11*DC21%*2
COVI4I=PL4,4)
Covi{5i=P{5,5i%PCL12
COV{EY=PLE, 6 %POLI2ADL22%%2
COV{(T)I=P(1y1)4P(444)-2%P(4y1)
CoViBY=(P{2,214P(5450)-2%P(5,21)*PCL11
COVI(9)I=(P(3,3)+P(6,€)-2%P(6,43)}*POL11%DC21%%2
C CCMPUTE STANCARD DEVIATICNS IN FEET UP,;NORTH,EAST
OC 450 1I=155
450 STAU{I)=CSERT(COVII)
WRITE (€,4SS)(STAL{I},I=1,5}
4G9 FORMAT(' ',3(3(3XyD23.161/))
WRITE(7,4991) STA,AC
46S1 FORMAT(LX,15A4)
RETURN
END

e XeRql
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SUBROUTINE COEF

C SUBROUTINE COMPUTES CGECMETRY PARAMETERS

C NOW

IMPLICIT REAL*B8(A-H;0-Z);INTEGER(I-N)
CIMENSICN C(3,3)
CCMMCN P(3:3),A13,3,;3)

KD=C
J0=0
CO £2 J=1,3
CO 51 K=1,3

SKIP NCN LSED JyK PAIRS
IF(J.EC.K) GO TO 51
IF (J#K.EC.3) GC TO 51

C EARTH XYZ COCRDINATES OF K

IF(K.EC.KC) GO TG 35

KD=K

DC2K=CCCS(P(2,4K))

X=P{1yKisCC2ZK *OCOS{Pi39KY
Y=P(1,K)*CC2K *DSIN(P(3,K))

Z=P(1,K)*CSIN(P(2,K))

C DIRECTICN CCSINES OF J W/R EARTH XYZ

35

45

40
47

46

48
50

[
-

£2

IF (J.EC.JD) GC TO 45
J0=J
CS2J=CSIN(P(2,4J)}
£S3J=DSIN(P(3,4J))
0C2J=CCCS(P(2,J))
CC3J=DCCS(P(3,4))
C(2,1)=-DS2J%0C3J
C(2423V=-CS2J%DS3J
C{2.:3)=0C2J
Cl3yl¥=L02d
C(3,2)= -CC3J
C{3,3)=C.LD0
C(l,1¥=CCzJ*DC3J

~a1 o T8 W ol o) Ik C [
L\L,Ll"l—\-z\l"’cd?)d

C(143)=CS2J

00 50 1=1,3

RC=ACII 1 )*X+CUI,2)%Y+C(1,43)%2)/P(1,4K)
IF(I.GT.1) GO TO 40

1P(1,K)*RC)

IF(I-2) 48447,46
AlTJ9K)==P(1,yJ)*P(1,K})*RC/RHO
GO TO £0

AllsdsKd¥= PULLJ)*P(1,K}*RC/RHO
GO TO 50

ALl 339K} =(P{13J}-P{1,4K}=RCH/RHCO
CONTINUE

CONTINUE

CONTINUE
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RETURN
END

OO0

SUBRCUTINE POSTMT{A,B,P,M)

SUBROUTINE TC POSTMULTIPLY BY SPARSE MATRIX
IMPLICIT REAL®8(A-Hy0-Z),INTEGER(I-N)
CCMMON /MAT/NyJINpJM

FOST MULTIPLY BY ALMOST DIAGCNAL MATRIX P=A%*B
DIMENSICN A(MyNY,EBUNyN)oyP(M,N)

CO 20 1I=1,M
CO 20 J=1,4N
2 P(1,4J)=CeCDO
IF(J:LTLJN) GO TO 5
IF(Ja.LE.JIM) GO TC 15
5 P(I4J)=A(1,J)%B(J,J)
GO TO 20
15 SU¥M=0.0CO0
DO 16 K=JN,JM
16 SUVM= SUM+A(I  K)I%B(KyJ)
P(1,J)= SLM
20 CONTINUE
RETURN
END

(@)

o

AOOOO

SUBROUTINE PREMT(AyByePyM)

C SUBROUTINE TO PREMULTIPLY BY SPARSE MATRIX
INMPLICIT REAL*B8(A-H,0-Z)y INTEGER(I-N)
CCMMCN  /NMAT/NyJNyJM

C PREMULTIPLY BY ALMOST OIAGONAL MATRIX
DIMENSICN A(NIN}B{NsM)oPINyM)

P00 20 1I=1,N
00 20 J=1l,M

2 P(I,J)=0.CD0
IF(I.LT+JN} GG TO 5
IF{I.LE.J¥) GO TO 15

5 P{lydi= A{I,1¥%B(1,J)
GO TO 20

15 SUM=0,0C0
DD 16 K=JNyJM

18 SUM=SUM¢ A(T,K)2B(K,J)
P(I,J)=SUM

20 CONTINUE
RETURN
ENC
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