Relative positioning by navigation satellite using Doppler shifts and propagation delays as observables

Lorys Ascher
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Ascher, Lorys, "Relative positioning by navigation satellite using Doppler shifts and propagation delays as observables " (1974). Retrospective Theses and Dissertations. 6019.
https://lib.dr.iastate.edu/rtd/6019

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the matorial. !t is customary to hegin ahotoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complote.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "phontographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmen 2 ? received.

Xerox University $\begin{aligned} \text { 鳥icrofilms }\end{aligned}$

74-23,719
ASCHER, Lorys, 1944-
RELATIVE POSITTONING BY NAVIGATION SATELLITE USING DOPPLER SHIFTS AND PROPAGATION DELAYS AS OBSERVABLES.

Iowa State University, Ph.D., 1974 Engineering, electrical

University Microfilms, A XEROX Company , Ann Arbor, Michigan

Relative positioning by navigation satellite using Doppler shifts and propagation delays
as observables
by

Lorys Ascher

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPIIY

Najor: Electrical Engineering

Approved:

Signature was redacted for privacy.
In Charge of Major Work

Signature was redacted for privacy.
For the Major Department

Signature was redacted for privacy.
For the Graduate College
Iowa State University Ames, Iowa

TABLE OF CONIEVIS
Page
I. SATELLITE NAVIGATION SYSTEMS AND RELATIVE POSITIONING 1
A. Satellite Navigation 1
B. Relative Positioning (Translocation) 2
C. Surveying 3
II. SYSTEM INTEGRATION 6
A. Introduction 6
B. Kalman Filter 8
C. Coordinate Systems 12
D. Dynamic :Model 12
E. Measurement Model 17
F. Other Paraneters for Kalman Filter 22
G. Simplified Translocation System 30
III. SIMULATIQN RESULTS 32
A. Introduction 32
B. Influence of Crosscorrelation 40
C. Satellite Pass Geometry and Estimation of Position 42
D. Simplified System 45
E. Clocks Synchronization Error 48
F. Satellite Position Error 48
IV. CONCLUSION 50
V. REFERENCES 51
VI. ACKNOWLEDOMENTS 53
VII. APPENDIX A: SIMUATION OF SITPLIFIED SYSTEM 54
VIII. APPENDIX B: ROUND-OFF ERRORS 57
IX. APPENDIX C: COMPUTER PROGRAM LISTING FOR REFERENCE RUN 59

I. SA'TELLITE NAVIGATION SYSTEMS AND RELATIVE POSITIONING

A. Satellite Navigation

The Navy Navigation Satellite System (NNSS), also called Transit, has been operational since 1964 and uses four satellites in circular polar orbits at 600 miles of altitude. Each satellite transmits a stable 400 MHz continuous wave which is phase modulated with binary data describing the satellite trajectory and timing markers.

Anywhere on earth one can track a satellite pass and get a position fix every $11 / 2$ to 2 hours. The relative velocity of the satellite with respect to the earth surface creates a Doppler shift in the 400 MHz signal when it is received by a ground station. The received signal is compared with that of a ground oscillator, the difference between them being integrated for each period of about 20 seconds between timing marks, thus generating a sequence of Doppler counts. This sequence is determined by the satellite path, the location of the receiver on earth: and both oscillator offsets. A least square fitting technique is used to find which ground position and oscillator offsets best explain the observed sequence of counts and gives their estimates (Fig. 1.1). A more complete description of the Transit system can be found in (13).

Other satellite navigation schemes have been studied (14). An attractive one involves stationary satellites which could be used for other purposes as well, such as relays. Stationary satellites being higher (about 20,000 miles altitude) also provide a good basis for triangulations for the navigation of space ships in the vicinity of the earth in addition to sea level or low altitude aircraft positioning.

Stationary satellites do not generate Doppler shifts in the signals received on the ground, and therefore the range measurements have to be obtained directly from time measurements. We show here that this method of ranging by time measurements could be used to improve the present Transit receivers and is very advantageous for relative positioning,

At present, one advantage of Transit is that it exists and is maintained by the United States Navy and free for the other users. Another advantage is that it is a passive system since it does not require the satellite to respond to a particular user therefore not limiting the number of users and completely separating the Navy's responsibilities from the user's.
B. Relative Positioning (Translocation, Fig. 1.2)

If two receivers are close enough to track the same satellite pass, high accuracy in the relative position estimate can be expected because of: crosscorrelation in the absolute position errors and also the fact that satellite position errors nearly cancel out (16). In surveying applications the data (Doppler counts) do not have to be processed inmediately and could be processed later on a large computer, thus simplifying the receivers by suppressing the small computers normally found on
 ventional receivers using Doppler counts only for ranging. It still would be possible to use accurate atomic clocks in both receivers to measure the time of arrival of the markers sent by the satellite and use the time lag between them in addition to Doppler counts to find the
relative positions of the receivers. The time lag between arrival of the same marker in both receivors is directly proportional to their relative distance and should be advantageous for relative positioning. Such a system does not require any change in the present Transit system as far as the satellite and all the Navy's tracking stations are concerned. Only the receivers need to be changed.

In this research we evaluate the improvement obtained in both absolute and relative positioning using time measurements in addition to Doppler counts.

The performance of a system using time measurements only is evaluated as well as the performance of a simplified suboptimal version of it.

> C. Surveying

Surveying using electromagnetic waves (without a satellite) involves receiving signals from two ground transmitters also being used as a triangulatim basis. They are divided in circular, hyperbolic, or elliptical systems depending if the sensors respond to distance, distance difference, or distance sum respectively. These systems, for ranges of about 100 miles, have a relative accuracy of about 30 feet (7). More accurate distance measurenents can be made using higher carrier frequencies but require a direct line of sight between transmitter and receiver, which is often not practical.

Using a satellite pass is then equivalent to having it act as a succession of transmitters which are used for triangulation provided the satellite path is known with sufficient accuracy. Then the translocation
system can be used for surveying purposes and give the relative position of one receiver with respect to the other in terms of altitude, latitude, and longitude without the need of a direct line of sight and without need of a third piece of equipment to triangulate with.

Fig. 1.1. Satellite navigation

lig. 1.2. Relative positioning

II. SYSTEM INTEGRATION

A. Introduction

In this chapter some results or Kalman filtering are recapitulated, and the coordinate systems used are defined and used to get the dynamic model and the measurement model. Miscellaneous parameters necessary for the Kalman filter are also defined. Last, the modeling of a simplified translocation system is explained.

The observables used to estimate absolute and relative positions of the ground receivers are the measured Doppier counts and the times of arrival of the markers in addition to the predicted satellite trajectory (Fig. 2.1). The observables are norlinear functions of the receiver's positions, satellite position, and also oscillator frequencies and clock synchronization error. In order to have a linear model the estimation procedure is not done on the actual measurements, Rather the position errors are estimated by comparing the actual measurements with computed "measurements" based on the original reference estimates of receivers and satellite positions, and oscillators and clock offsets.

Tiwo modes of operation can exist.
In the open loop mode computed measurements are always based on the same original reference estimates. The final estimates being equal to the original reference estimates minus the estimated errors.

In the closed loop mode the reference estimates on which the computed measurements are based are updated at each step making the reference estimates closer to the true values and thus reducing the interval of linearization of each estimated variable. There is no analytical way

Fig. 2.1. Block diagram for translocation
of knowing if the closed loop mode of operation is stable and converges. If stable, it should be, on the average, more accurate than the open loop system since the approximation due to the linearization is reduced at each step, while in the open loop mode the linearization remains only as good as the original estimates. This last statement is only a heuristic argument which makes sense from an engineering view point, and there is no known analytical way to prove it. Only a 'lonte Carlo simulation could give an idea of the closed loop operation in terms of stability and accuracy. Sinulating the open loop mode should give an upper bound for the average estimation error of the closed loop system should it be stable. In order to save computer time a variance analysis of the open loop mode is made rather than a Nonte Carlo simulation, For the open loop mode the only advantage of a :fonte Carlo simulation would be to give an idea of the errors caused by the linearization but this is already known to be negligible from existing navigation systems which use the sane type of linearized equations.

Because of its convenience for computer implementation in a real life system, a Kalman filter is used for the estimator.

B. Kalman Filter

Kalman filter theory is adequately treated elsewhere so only the salient aspects will be mentioned here.

1. Standard Kalnan filter

The process to be estimated is assumed to satisfy the vector differential equation

$$
\begin{equation*}
\dot{x}=A(t) x+u(t) \tag{2.1}
\end{equation*}
$$

where $\quad x=$ System state vector

$$
\begin{aligned}
& \mathrm{A}(\mathrm{t})=\text { Dynamics matrix } \\
& \mathrm{u}(\mathrm{t})=\text { White roise input vector }
\end{aligned}
$$

Nonwhite processes are modeled by having a shaping filter act on a white noise, as shom by Sorenson (12) and Brown (1), thus augmenting the size of the matrix A and fitting the above model.

Discretizing (2.1) we get

$$
\begin{equation*}
x_{n+1}=\phi_{n} x_{n}+g_{n} \tag{2,2}
\end{equation*}
$$

where

$$
\begin{aligned}
x_{n}= & \text { State vector at time } t_{n} \\
\varphi_{n}= & \text { Transition matrix } \\
g_{n}= & \text { Response to white noise input vector } \\
& \text { in interval } t_{n} \text { to } t_{n+1}
\end{aligned}
$$

The inputs (data) for the kalman filter arc discrete measurements of the form

$$
\begin{align*}
y_{n} & =M i_{n} x_{n}+\delta y_{n} \tag{2.3}\\
\text { where } \quad y_{n} & =\text { Measurement vector at time } t_{n} \\
y_{n} & =\text { Measurement matrix at time } t_{n} \\
\delta y_{n} & =\text { Time uncorrelated measurement error vector }
\end{align*}
$$

Assuming all the above, Kalman (9) has shown that \hat{x}_{n}, the minimum mean square error estinate of x_{n}, is given by

$$
\begin{equation*}
\hat{x}_{n}=\hat{x}_{n}^{\prime}+b_{n}\left(y_{n}-M_{n} \hat{x}_{n}^{\prime}\right) \tag{2.4}
\end{equation*}
$$

with error covariance matrix $p_{n}=E\left(\hat{x}_{n}-x_{n}\right)\left(\hat{x}_{n}-x_{n}\right)^{T}$
given by $P_{n}=P_{n}^{*}-b_{n}\left(M_{n} P_{n}^{*} M_{n}^{T}+V_{n}\right) b_{n}^{T}$
where

$$
\begin{align*}
b_{n} & =P_{n}^{*} M_{n}^{T}\left(M_{n} P_{n}^{*} M_{n}^{T}+V_{n}\right)^{-1} \tag{2.6}\\
\hat{x}_{n}^{\prime} & =\phi_{n-1} \hat{x}_{n-1} \tag{2.7}\\
P_{n}^{*} & =\phi_{n-1} P_{n-1} \phi_{n-1} T+H_{n-1} \tag{2.8}\\
H_{n-1} & =E\left(g_{n-1} \delta_{n-1} T^{\prime}\right) \tag{2,9}\\
V_{n} & =E\left(\delta y_{n} \delta y_{n} T^{2}\right) \tag{2.10}
\end{align*}
$$

The above equations give a recursive way to get the best estimate of x_{11} and the corresponding estimation error on the basis of the last estimate of the state vector \hat{x}_{n-1} and its error covariance matrix P_{n-1} the new measurement vector y_{n}, and its known connection with the state vector (i.e. the matrix M_{n}), and measurement error statistic V_{n}. All other needed parameters are intrinsic to the dynamic model $(2,1)$ and $(2,2)$.

In practice, the dynamic model is known before hand even though the knowledge of $\phi_{\mathrm{n}-1}$ and $H_{\mathrm{n}-1}$ is only needed at time t_{n} in order to get \hat{x}_{n}.

The same applies to the measurement model $\left(Q_{n}\right.$ and $\left.V_{n}\right)$ which is very useful in practice since any new measurement of any linear combination of the state components can be used. This permits the use of new sources of "information" as they occur without needing prior knowledge of their occurrences and relationships to the states. The limitations to this versatility are due to programming limitations, not to the Kalman algorithm itself.

The above one step equations require $t_{n} \geq t_{n-1}$. The case $t_{n}=t_{n-1}$ ($\varphi=\mathrm{I}$) corresponds to re-updating the estimate using a new measurement synchronous with the last one used and such that their errors are not cross correlated. This permits simplification of the computations in the
case of a high dimension measurement vector if it can be broken down into several measurements with independent errors and processing each measurement sequentially (12).

The above equations do not work for $t_{n}<t_{n-1}$ (smoothing) but a recursive Kalman algorithm does exist (1).

If the recursive procedure is started with $\hat{x}_{0}=E\left(x_{0}\right)$ and $P_{0}=$ $E\left(x_{0} x_{0}^{T}\right)$ then the estimate \hat{x}_{n} is unbiased.

Kalman filter using a gain b_{n} different from the optimal given by (2.6) is suboptimal, and the associated error covariance is then obtained by replacing (2.5) by:

$$
\begin{equation*}
P_{n}=\left(I-b_{n} M_{n}\right) P_{n}^{*}\left(I-b_{n} M_{n}\right)^{T}+b_{n} V_{n} b_{n}^{T} \tag{2.11}
\end{equation*}
$$

2. Delayed state Kalman filter

In some applications, processing of Doppler counts for instance, the measurement vector is a linear combination of both present and previous state vector. Or:

$$
y_{n}=i_{n} x_{n}+i_{n} x_{n-1}+i y_{n}
$$

A Kalman filter for this model is given by brown and Hartman in (3). Stuva (15) derived an equivalent algorithm that is less sensitive to round off errors in the case of Doppler counts applications.

Equations (2.2) and (2.12) describe the model.
The recursive equations for Stuva's algorithm are:

$$
\begin{align*}
& b_{n}=\left[\varphi_{n-1} P_{n-1}\left(M_{n} \phi_{n-1}+N_{n}\right)^{T}+H_{n-1} 1_{n} T Q_{n}-1\right. \tag{2.13}\\
& \hat{x}_{n}=\phi_{n-1} \hat{x}_{n-1}+b_{n}\left[y_{n}-\left(Q_{n} \varphi_{n-1}+N_{n}\right) \hat{x}_{n-1}\right] \tag{2.14}
\end{align*}
$$

$$
\begin{equation*}
P_{n}=\phi_{n-1} P_{n-1} \phi_{n-1}^{T}+H_{n-1}-b_{n} 0_{n} b_{n}^{T} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{n}=\left(M_{n} \phi_{n-1}+N_{n}\right) P_{n-1}\left(M_{n} \phi_{n-1}+N_{n}\right)^{T}+V_{n}+M_{n} H_{n-1} M_{n}^{T} \tag{2.16}
\end{equation*}
$$

C. Coordinate Systems

The coordinate systems used are shown on Fig. 2.2.
The coordinate system used throughout to define positions of receivers and satellite and used to define the state variables is earthfixed polar. An absolute (inertial) coordinate system is not necessary here since this study does not invoive sensors responding to accelerations.

Two other coordinate systems are used only for the computations related to geometry in the measurement model. They are the earth-fixed rectangular coordinate system and the local rectangular coordinate system which permits the definition of direction cosines.

The iocal rectangular system is also used in the last step of each simulation to convert position uncertainties in latitude and longitude, expressed in radians, to position uncertainties in feet in the east-west and north-south directions.

D. Dynamic Model

1. Introduction

For implementation of the Kalman filter the dynamic model includes states for the ground receivers' positions, satellite coordinates and states for oscillators and clocks errors.

North
$\left(R_{A}, \theta_{A}, \Lambda_{A}\right)$ Earth fixed polar
$\left(X_{A}, Y_{A}, Z_{A}\right)$ Earth fixed rectangular ($\mathrm{X}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}, z_{\mathrm{A}}$) Local rectangular For point A

Fig. 2.2. Coordinate systems

The satellite position errors (deviations from the predicted path) are assumed to be harmonic of period equal to the time of revolution of the satellite. This would be unrealistic if the same satellite was to be used for several successive passes as the satellite position errors are mainly caused by a lack of knowledge of the earth gravity field. Since in the simulation we use the same satellite only once and since the time the satellite is tracked is short compared to one period this simple way of simulating the position errors of the satellite does not affect the validity of the results.

The oscillator errors and clocks errors are modeled using the shaping filter technique.
2. Receivers position errors
$\delta R_{A}, \delta \theta_{A}, \delta \Lambda_{A}$ are coordinates errors for receiver A.
$\delta R_{B}, \delta \theta_{B}, \delta \Lambda_{B}$ are coordinates errors for receiver B.
These states are modeled as random constant biases. Thus

$$
\begin{equation*}
\dot{x}_{i}=0 \tag{2.17}
\end{equation*}
$$

3. Satellites position Errors
$\delta R_{s}, \delta \theta_{s}, \delta \Lambda_{s}$ are coordinates errors of the satellite.
These states are modeled as harmonic processes of independent random dinplitude and phases of period equal to the time of me satellite revolution. Each satisfies the differential equation:

$$
\begin{equation*}
\ddot{x}+\omega^{2} x=0 \tag{2.18}
\end{equation*}
$$

or in state form:

$$
\left[\begin{array}{l}
\dot{x}_{i} \tag{2.19}\\
\dot{x}_{i+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
x_{i+1}
\end{array}\right]
$$

Since we assume phase and amplitude to be independent we have for initial condition:

$$
\begin{equation*}
\operatorname{Er}[x(0) \dot{x}(0)]=0 \tag{2.20}
\end{equation*}
$$

4. Receivers and satellites oscillators time correlated errors

The frequency errors of the satellite oscillators are modeled as independent first-order Gaussian Markov processes. Each is generated by a shaping filter (4 and 12), acting on a white noise driving function, whose input-output differential equation in state form is:

$$
\begin{equation*}
\dot{x}_{i}=-\beta_{i} x_{i}+\sqrt{2 \sigma_{i}^{2} \beta_{i}} f_{i} \tag{2,21}
\end{equation*}
$$

where $\quad f_{i}=$ Unit white noise
$\beta_{i}=$ Inverse time constant of Markov process
$\sigma_{i}^{2}=E\left[x_{i}^{2}\right]=$ Variance of frequency error

5. Time measurement correlated error

The error on the time measurement of arrival of markers in both receivers A and B is modeled as an integrated white noise (random walk). In state form

$$
\begin{equation*}
\dot{x}_{i}=\sigma_{i} f_{i} \tag{2.22}
\end{equation*}
$$

6. Dynamic mode1

We can now get the plant equation by defining the states:

$x_{7}=\delta R_{S}$	feet	
$\mathrm{x}_{8}=\dot{\mathrm{x}}_{7}$	feet/second	
$x_{9}=\delta \theta_{S}$	radians	satellite
$\mathrm{x}_{10}=\dot{\mathrm{x}}_{9}$	radians/second	
$\mathrm{x}_{11}=\delta \Lambda_{S}$	radians	
$\mathrm{x}_{12}=\dot{x}_{11}$	radians/second	J
$\mathrm{x}_{13}=\delta \mathrm{f}_{\mathrm{A}}$	Hertz	oscillator in receiver A
$\mathrm{x}_{14}=\delta \hat{f}_{B}$	Hertz	oscillator in receiver B
$\mathrm{x}_{15}=\delta \mathrm{f}_{S}$	Hertz	satellite oscillator
$\mathrm{x}_{16}=\delta \Lambda_{M}$	seconds	clocks' synchronization error

Now, let the entire state model be

$$
\dot{x}=A x+u
$$

The nonzero elements of the matrix A are then

$$
\begin{aligned}
a_{7,8} & =a_{9,10}=a_{11,12}=1 \\
a_{0,7} & =a_{10,9}=a_{12,11}--w^{2} \\
a_{13,13} & =-\beta_{A} \\
a_{14,14} & =-\beta_{B} \\
{ }^{3} 15,15 & =-\beta_{S}
\end{aligned}
$$

where $\omega=\frac{2 \pi}{T}$ and T is the period of the satellite.
The nonzero driving terms are

$$
\begin{aligned}
& u_{13}=\sqrt{2 \sigma_{A}^{2} \beta_{A}} f_{13} \\
& u_{14}=\sqrt{2 \sigma_{B}^{2} \beta_{B}} f_{14} \\
& u_{15}=\sqrt{2 \sigma_{S}^{2} \beta_{S}} f_{15} \\
& u_{16}=\sigma_{c} \quad f_{16}
\end{aligned}
$$

where f_{i} 's are independent unit white noises.
This completes the dynamic model.

E. Measurement Model

1. Introduction

In order to use Kalman filtering the observables must be expressed as linear combinations of the state vector components or state vectors if the delayed state filter is to be used.

This linearization is done by first expressing the observables (Doppler counts and time lag) in terms of range or range rate between receiver and satellite. Then the relationship between a small variation of the observable and a corresponding variation of the range (0) is found. Also the linear relationship between a range variation ($\delta \rho$) and a coordinate variation ($\delta R, \delta \theta, \delta \Lambda$) at either end is found by differentiation. Finally, substituting, the variation of the observable is directly related through the linear relation to variations of coordinates at both end points of the range between satellite and ground receiver. These coordinates having been chosen as state variables, this last relation is the needed link for the measurement equation of the Kalman filter.

2. Linearization coefficients

The linearized equation relating $\delta \rho$ and $\delta R, \delta \Lambda, \delta \theta$ is obtained by partial differentiation of ρ with respect to R, θ and Λ and is given in llartman and Brown (3).

$$
\begin{equation*}
\delta \rho=\frac{1}{\rho}\left[\left(R-R_{s} C_{z z_{s}}\right) \delta R+R R_{s} C_{y z_{s}} \delta \Lambda-R R_{s} C_{x z_{s}} \delta \theta\right] \tag{2.23}
\end{equation*}
$$

where R, θ, Λ are the ground receiver coordinates $R_{s}, \theta_{S}, \Lambda_{s}$ are the satellite coordinates $C_{z z_{S}}, C_{y z_{S}}, C_{x z_{s}}$ are the direction cosines of ground local rectangular coordinate system x, y, z with respect to satellite local rectangular coordinate system x_{5}, y_{S}, z_{s}.

The same relation may be applied to find the variation of the range due to perturbations of the satellite coordinates $R_{S},{ }^{\theta}, \Lambda_{S}$:

$$
\begin{equation*}
s_{\rho}=\frac{1}{\rho}\left[\left(R_{s}-R C_{z_{s}}\right) \delta R_{s}+R_{s} R C_{y_{s}} z^{\delta \Lambda_{s}}-R_{s} R C_{x_{s}} z^{\delta \theta_{s}}\right] \tag{2.24}
\end{equation*}
$$

where $C_{z_{s} z}, C_{y_{s} z}, C_{x_{s} z}$ are the direction cosines of the satellite with respect to ground station.

Summing both linearized equations we get the total variation of the range due to perturbations of both satellite and ground station coordinates:

$$
\begin{aligned}
& \delta \rho=\Lambda \delta R+B \delta \theta+C \delta \Lambda+D \delta R_{s}+E \delta \theta_{s}+F \delta \Lambda_{s} \\
& \text { where } \quad A=\frac{R-R_{s} C_{Z Z_{5}}}{\rho} \\
& D=\frac{R_{s}-R C_{z_{s}}}{\rho} \\
& B=\frac{-R R_{S} C_{X z_{S}}}{\rho} \\
& E=\frac{-R_{S} R C_{x_{S}} z}{\rho} \\
& C=\frac{R R_{S} C_{y z_{S}}}{\rho} \\
& F=\frac{R_{s} R C_{y_{S}}}{\rho}
\end{aligned}
$$

3. Equation for Doppler measurements

The measured Doppler count is proportional to the range difference and is giverı in siansell (13).

$$
\begin{equation*}
N_{m}=\left(f-f_{s}\right) \Delta T+\frac{f}{c}\left[\rho\left(t_{n}\right)-\rho\left(t_{n-1}\right)\right]+\delta N \tag{2.25}
\end{equation*}
$$

where

$$
\Delta T=\text { countins interval }
$$

$$
\begin{aligned}
\mathrm{E} & =\text { ground oscillator frequency } \\
\mathrm{f}_{\mathrm{S}} & =\text { satellite oscillator frequency } \\
\delta N & =\text { uncorrelated count error } \\
\rho(\mathrm{t}) & =\text { actual range at time } \mathrm{t} \\
\mathrm{c} & =\text { light velocity }
\end{aligned}
$$

The Doppler count predicted on the basis of the erroneous range $\rho+\delta \rho$ is:
$N_{C}=\left[f+\delta f-f_{s}-\delta f_{S}\right] \Delta T+\frac{f}{c}\left[\rho\left(t_{n}\right)+\delta \rho\left(t_{n}\right)-\rho\left(t_{n-1}\right)-\delta \rho\left(t_{n-1}\right)\right]$
where $\quad \delta f=$ ground oscillator error

$$
\begin{aligned}
\delta \mathrm{f}_{\mathrm{S}} & =\text { satellite oscillator error } \\
\delta \rho & =\text { range error }
\end{aligned}
$$

The input to the Kalman filter is:
$N_{c}-N_{m}=\frac{f}{c}\left[\delta \rho\left(t_{n}\right)-\delta \rho\left(t_{n-1}\right)\right]-\delta N-\Delta T \delta f+\Delta T \delta f_{S}$
Replacing the $\delta \rho$'s by their linearizations in terms of the coordinate errors on ground station and satellite we get:

$$
\begin{align*}
N_{C}-N_{m}= & \frac{1}{\lambda}\left[A_{n} \delta R_{n}+B_{n} \delta \theta_{n}+C_{n} \delta \Lambda_{n}\right. \\
& +D_{n} \delta R_{s n}+E_{n} \delta \theta_{s n}+F_{n} \delta \Lambda_{s n} \\
& -A_{n-1} \delta R_{n-1}-B_{n-1} \delta \theta_{n-1}-C_{n-1} \delta \Lambda_{n-1} \\
& \left.-D_{n-1} \delta R_{s, n-1}-E_{n-1} \delta \theta_{s, n-1}-F_{n-1} \delta \Lambda_{s, n-1}\right] \\
& -\Lambda T \delta f+\Delta T \delta f_{s}-\delta N \tag{2.28}\\
\text { where } \quad & A_{n}=A \text { at } t=t_{n}, B_{n}=B \text { at } t=t_{n}, \ldots \text { etc. } \\
\text { and } \quad & A_{n-1}=A \text { at } t=t_{n-1}, B_{n-1}=B \text { at } t=t_{n-1}, \ldots \text { etc. }
\end{align*}
$$

These are the linearization coefficients corresponding to the geometries at times t_{n} and t_{n-1}.
and

$$
\begin{aligned}
& \delta R_{n}=\delta R \text { at } t=t_{n}, \delta \theta_{n}=\delta \theta \text { at } t=t_{n}, \ldots \text { etc. } \\
& \delta R_{s n}=\delta R_{s} \text { at } t=t_{n}, \ldots \text { etc. }
\end{aligned}
$$

We get two such equations, one for each receiver with corresponding geometry coefficients.

4. Equation for time measurements

The time interval at which the same time mark transmitted from the satellite is received in receivers A and B is theoretically:

$$
\begin{align*}
\tau & =\frac{1}{C}\left[\rho_{A}-\rho_{B}\right] \tag{2.29}\\
\rho_{A} & =\text { actual range from satellite to receiver } A \\
\rho_{B} & =\text { actual range from satellite to receiver } B \\
c & =\text { light velocity }
\end{align*}
$$

The measured time interval is:

$$
\begin{align*}
\tau_{m}=\frac{1}{c}\left[\rho_{A}\left(t_{n}\right)\right. & \left.-\rho_{B}\left(t_{n}\right)\right]+\Delta \tau+\delta \tau \tag{2.30}\\
\Delta \tau & =\text { correlated time measurement error } \\
\delta \tau & =\text { uncorrelated time measurement error }
\end{align*}
$$

The correiated error is here mainily the error in ciock synchronization.

The predicted time interval is:
${ }^{\tau} c=\frac{1}{c}\left[\rho_{A}\left(t_{n}\right)+\delta \rho_{A}\left(t_{n}\right)-\rho_{B}\left(t_{n}\right)-\delta \rho_{B}\left(t_{n}\right)\right]$
The input to the Kalman filter is then:
${ }^{\tau} c-\tau_{m}=\frac{1}{c}\left[\delta \rho_{A}\left(t_{n}\right)-\delta \rho_{B}\left(t_{n}\right)\right]-\Delta \tau-\delta \tau$
Replacing the $\delta 0^{\prime} s$ by their linearizations in terms of the states we get:

$$
\begin{align*}
{ }^{{ }^{c}} \mathrm{c}-\tau_{\mathrm{m}}= & \frac{1}{\mathrm{c}}\left[\mathrm{~A}_{\mathrm{An}} \delta R_{\mathrm{An}}+\mathrm{B}_{\mathrm{An}} \delta \theta_{\mathrm{An}}+\mathrm{C}_{\mathrm{An}} \delta \Lambda_{\mathrm{An}}\right. \\
& +D_{\mathrm{An}} \delta R_{\mathrm{Sn}}+\mathrm{E}_{\mathrm{An}} \delta \theta_{\mathrm{Sn}}+\mathrm{F}_{\mathrm{An}} \delta \Lambda_{\mathrm{Sn}} \\
& -A_{\mathrm{Bn}} \delta R_{\mathrm{Bn}}-\mathrm{B}_{\mathrm{Bn}} \delta \theta_{\mathrm{Bn}}-\mathrm{C}_{\mathrm{Bn}} \delta \Lambda_{\mathrm{Bn}} \\
& \left.-\mathrm{D}_{\mathrm{Bn}} \delta \mathrm{R}_{\mathrm{Sn}}-\mathrm{E}_{\mathrm{Bn}} \delta \theta_{\mathrm{Sn}}-\mathrm{F}_{\mathrm{Bn}} \delta \Lambda_{\mathrm{Sn}}\right] \\
& -\Delta \tau-\delta \tau \tag{2.33}
\end{align*}
$$

Where $A_{A n}, B_{A n}, C_{A n}$. $F_{A n}$ are linearization coefficients for the range from receiver A to the satellite at time $t_{n}, A_{B n}, B_{B n}, C_{B n}$ are linearization coefficients for the range from receiver B to satellite.

5. Measurement model

Knowing the measurement equations for Doppler counts and times we can define the measurement vector:

$$
y=\left[\begin{array}{l}
N_{c A}\left(t_{n}\right)-N_{m A}\left(t_{n}\right) \tag{2.34}\\
N_{c B}\left(t_{n}\right)-N_{m B}\left(t_{n}\right) \\
\tau_{c}\left(t_{n}\right)-\tau_{m}\left(t_{n}\right)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
N_{C A}\left(t_{n}\right)=N_{c} & \text { for receiver } A \text { at } t_{n} \\
N_{C B}\left(t_{n}\right)=N_{C} & \text { for receiver } B \text { at } t_{n} \\
N_{m A}\left(t_{n}\right)=N_{m} & \text { for receiver } A \text { at } t_{n} \\
N_{m B}\left(t_{n}\right)=N_{m} & \text { for receiver } B \text { at } t_{n}
\end{array}
$$

and letting

$$
\begin{aligned}
& \frac{A}{\lambda}=a, \frac{B}{\lambda}=i, \ldots \ldots \cdot \frac{F}{\lambda}=f \\
& \frac{A}{c}=\alpha, \frac{B}{c}=\beta, \ldots \ldots \cdot \frac{F}{c}=\varphi
\end{aligned}
$$

we get a delayed state measurement equation of the form:

$$
\begin{equation*}
y=M_{n} x_{n}+N_{n} x_{n-1}+v \tag{2.35}
\end{equation*}
$$

where

$$
\begin{aligned}
& v=\left[\begin{array}{l}
\delta N_{A} \\
\delta N_{B} \\
\delta \tau
\end{array}\right] \\
& \delta N_{A}=\text { uncorrelated count error in } A \\
& \delta N_{B}=\text { uncorrelated count error in } B \\
& \delta \tau=\text { uncorrelated time error }
\end{aligned}
$$

The state equation and the measurement equation just derived are suitable for using a delayed state Kalman filter. The matrices M_{n} and N_{n} and N_{n} are shown in Fig. 2.3. Note that the delayed state model is required only because of the Doppler measurements.

F. Other Parameters for Kalman Filter

1. Transition matrix

'The elements of the transition matrix are deduced in a routine manner from the state equation.

$$
\text { They are } \begin{aligned}
\varphi_{i, i} & =1 \quad \text { for } i=1,2,3,4,5,6 \\
\Phi_{i, i} & =\cos (\omega \cdot \Delta T) \quad \text { for } i=7,8,9,10,11,12 \\
\phi 7,8 & =\phi_{0,10}=\phi_{11}, 12=\frac{\sin (\omega . \Delta T)}{\omega} \\
\phi_{0,7} & =\phi_{10,9}=\phi_{12,11}=-\omega \sin \left(\omega_{0} \Delta T\right) \\
\phi_{13,13} & =\exp \left(-\beta_{13} \cdot \Delta T\right) \\
\phi_{14,14} & =\exp \left(-\beta_{14} . \Delta T\right) \\
\phi_{15,15} & =\exp \left(-\beta_{15} . \Delta T\right) \\
\phi_{16,16} & =1
\end{aligned}
$$

All other elements are null.

Fig. 2.3. Measurement matrices

$$
\begin{aligned}
& N_{n}= \\
& {\left[\begin{array}{cccccccccccccccccc}
-a_{A n-1} & -b_{A n-1} & -c_{A n-1} & 0 & 0 & 0 & -d_{A n-1} & 0 & -e_{A n-1} & 0 & -f_{A n-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -a_{B n-1} & -b_{B n-1} & -c_{B n-1} & -d_{B n-1} & 0 & -e_{B n-1} & 0 & -f_{B n-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Fig. 2.3. (continued)
2. Covariance matrix for white driven states
a. Markov processes: $\underline{H}_{13,13}, \underline{H}_{14}, 14: \underline{H}_{15,15}$ These are given in Brown (1):

$$
\begin{align*}
& H_{i, i}=\sigma_{i}^{2}\left[1-\exp \left(-2 \beta_{i} \Delta T\right)\right] \tag{2,37}\\
& H_{i, j}=0
\end{align*}
$$

for all $\mathrm{i} \neq \mathrm{j}$ since we assume the oscillators are independent.
b. Random walk: $\underline{H}_{16,16}$ From Parzen (11) we have

$$
\begin{equation*}
H_{16,16}=\sigma_{c}^{2}{ }_{\Delta \mathrm{T}} \tag{8}
\end{equation*}
$$

where $\sigma_{c}{ }^{2}$ is the parameter of the wiener process.
3. Uncorrelated measurement error covariance matrix

The measurement error covariance matrix is defined as

$$
\left.V=E\left\{\begin{array}{l}
\delta N_{A} \tag{2.39}\\
\delta N_{B} \\
\delta \tau
\end{array}\right] \quad\left[\delta N_{A} \delta N_{B} \delta \tau\right]\right\}=\left[v_{i j}\right]
$$

where $\quad v_{11}=\mathrm{E}\left(\delta \mathrm{N}_{\mathrm{A}}{ }^{2}\right)=$ variance of uncorrelated count error in receiver \dot{A}
$v_{22}=E\left(\delta \cdot N_{B}^{2}\right)=$ variance of uncorrelated count error in receiver B
$v_{33}=E\left(\delta \tau^{2}\right)=$ variance of uncorrelated time measurement error

$$
\begin{equation*}
v_{12}=v_{21}=E\left(\delta N_{A} \delta N_{B}\right)=r\left[E\left(\delta N_{A}^{2}\right) E\left(\delta N_{B}^{2}\right)\right]^{1 / 2} \tag{2,40}
\end{equation*}
$$

where r is the coosscorrelation between time uncorrelated count errors in receiver A and receiver B.

$$
\text { Also } v_{31}=v_{32}=v_{13}=v_{23}=0
$$

assuming count errors and time errors are not crosscorrelated.

4. Initial estimation crror covariance matrix

a. States describing receivers position Assuming all original estimates of receivers coordinates are not crosscorrelated and about 100 feet r.m.s. we have

$$
\begin{aligned}
& P_{1,1}=100^{2} \\
& P_{2,2}=P_{1,1} / R_{A_{o}} \\
& P_{3,3}=P_{1,1} /\left(R_{A_{0}} \cos { }^{2} A_{0}\right)^{2} \\
& P_{4,4}=100^{2} \\
& P_{5,5}=P_{4,4} / R_{B_{o}}{ }^{2} \\
& P_{6,6}=P_{4,4} /\left(R_{B_{0}} \cos \theta_{B_{o}}\right)^{2} \\
& P_{i, j}=0 \text { for all ifj} \quad \text { for } i=1,2,3,4,5,6 \\
&
\end{aligned}
$$

where $\quad R_{\Lambda_{0}}=$ original estimate of R_{A}

$$
{ }^{\theta_{A_{O}}}=\text { original estimate of } \theta_{\mathrm{A}}
$$

and $R_{B_{0}}$ and $\theta_{B_{0}}$ are the original estimates for R_{B} and θ_{B}.
b. States describing satellite position Assuming 30 feet r.m.s. position error in cross track, along track, and radial satellite coordinates (6) we get

$$
\begin{aligned}
\mathrm{P}_{7,7} & =30^{2} \\
\mathrm{P}_{8,8} & =\mathrm{P}_{7,7 \omega^{2}} \\
\mathrm{P}_{9,9} & =30^{2} / R_{S_{\mathrm{O}}} 2 \\
\mathrm{P}_{10,10} & =\mathrm{P}_{9,9 \omega^{2}} \\
\mathrm{P}_{11,11} & =30^{2} /\left(\mathrm{R}_{S_{0}} \cos \theta_{S_{0}}\right)^{2} \\
P_{12,12} & =P_{11,11} \omega^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{R}_{S_{0}}=\text { original estimate of }{ }^{R_{S}} \\
& { }^{\theta} S_{0}=\text { original estimate of }{ }^{\theta} S
\end{aligned}
$$

Assuming the original errors on all three coordinates of the satellite are independent and also using relation (2.20)

$$
\begin{array}{rl}
P_{i, j}=0 \quad \text { for all } i \neq j & i
\end{array}=7,8,9,10,11,12 \quad \text { (satellite states) }
$$

c. States describing oscillator and clock errors
$p_{13,13}=E\left[\delta f_{A}^{2}\right]=$ variance of oscillator correlated error in A $P_{14,14}=E\left[\delta f_{B}^{2}\right]=$ variance of oscillator correlated error in B $P_{15,15}=E\left[\delta f_{S}^{2}\right]=$ variance of oscillator correlated error in satellite
$P_{16,16}=\sigma_{C}{ }^{2} \cdot T_{E}=$ variance of synchronization error between clock in receiver A and clock in receiver B and T_{E} is the time elapsed since the clocks were last synchronized.
^ssuming the original estimates of receiver positions, sateliite positions, oscillator and clocks synchronization errors are independent:

$$
\text { all other } P_{i, j}=0
$$

We now have all the elements to use a Kalman filter.
5. Remarks

The count errors in receivers A and B are pariiy caused by propagation errors. Therefore one would expect the crosscorrelation between the comit error in A and the count error in B to increase as the receivers are brought closer to each other because of the increasing similarity of the two respective propagation paths. The model does not take this into
account intrinsically. The crosscorrelation can be changed externally and simulation runs showed that this crosscorrelation does not significantly affect the system performance.

When the system uses two satellite passes it has been assumed it was two different satellites. This is less favorable than using the same satellite twice since then one could have a better estimate of the satellite oscillator error. At the beginning of a second satellite pass all elements of the error covariance matrix corresponding to satellite states (coordinates and oscillator error) are reset to the original value they had at the beginning of the first pass, and their crosscorrelation with other states is reset to zero.

The variance of the clock synchronization error is increased by an amount equivalent to 1 and $1 / 2$ hours of random walk, its crosscorrelation with the states describing the rec lrass coordinates being maintained the same.
6. Numerical values for error sources ill measurements

The numerical vaiues for the sources of error are approximate and claim only to be realistic if not exact.

The satellite oscillator is of crystal type and its offset is assumed to be 25 Hz r.m.s. The receiver local oscillators are assumed to be piloted by the atomic clocks. For a Cesium clock the frequency stability is of the order $\geq 10^{-11}$ for 1ife (8). Then this means a frequency offset of $4 \times 10^{-3} \mathrm{~Hz}$ r.m.s for a 400 Miz oscillator. All oscillator offsets are modeled as Markov processes of long time constant compared to the duration of one satellite pass. The time constant is not critical and is set to be 10° seconds.

The time synchronization error between both clocks is modeled as a Wiener process of parameter $\sigma=5 \times 10^{-11}$. This value was deduced from data given in (8).

The Doppler count uncorrelated error is due partly to residual refraction error remaining after correction. From past experience with Doppler navigation satellites (6) we assumed here 10 counts r.m.s due to propagation and 10 counts r.m.s due to other sources. This means about 15 counts r.m.s all together and a crosscorrelation between count error at both receivers of about 0.5 assuming it is due to the propagation errors and that both paths from sateilite to receivers are close and have very similar refractions.

The fractional frequency stability of atomic clocks is 10^{-11} r.m.s for averaging times of 1 to 60 seconds. Then the time error introduced in measuring an interval of about 20 seconds is $20 \times 10^{-11} \mathrm{sec}$ r.m.s. This is negligible compared with the time error introduced by the residual refraction errors. The contribution of refraction errors to time error can be arrived at from the 10 counts rom.s we took for the Doppler error. It corresponds to ten periods of the 400 MHz signal or 0.2510^{-7} sec r.m.s. Since we have two receivers and allowing for other sources $5 \times 10^{-8} \sec$ r.m.s of uncorrelated time measurement error seems reasonable.

In summary, the assuned narameters for measurements errors are:
a. Dynamic model

$$
\begin{aligned}
& \beta_{A}=\beta_{B}=\beta_{S}=10^{-8} \mathrm{sec}^{-1} \\
& \sigma_{A}=\sigma_{B}=4 \times 10^{-3} / \mathrm{lz}
\end{aligned}
$$

$\sigma_{S}=25 \mathrm{~Hz}$
$\sigma_{\mathrm{C}}=5 \times 10^{-11}$
b. Measurement model
$\mathrm{E}\left[\delta \mathrm{N}_{\mathrm{A}}^{2}\right]=\mathrm{E}\left[\delta \mathrm{N}_{\mathrm{B}}^{2}\right]=200$
$\mathrm{E}\left[\delta \mathrm{N}_{\mathrm{A}} \delta \mathrm{N}_{\mathrm{B}}\right]=0.5 \mathrm{E}\left[\delta \mathrm{N}_{\mathrm{A}}^{2}\right]$
$\mathrm{E}\left[\delta \tau^{2}\right]=\left(5.0 \times 10^{-8}\right)^{2}$

G. Simplified Translocation System

As it will be explained later in Section III.D, experimental results of simulations indicated it would be worthwhile to investigate a system which would not take into account the satellite position errors. We now give the model for such a system.

The state variables for this simplified system are:
$\left.\begin{array}{l}x_{1}=\delta R_{A} \\ x_{2}=\delta \theta_{A} \\ x_{3}=\delta A_{A} \\ x_{4}=\delta R_{B} \\ x_{5}=\delta \theta_{B} \\ x_{6}=\delta \Lambda_{B} \\ x_{7}=\delta A_{M}\end{array}\right\}$ receiver A

The simplified system also neglects clocks drifts and therefore see all the states to be estinated as biases thus simplifying the computations:
$\begin{array}{ll}\text { Dymamic model: } & x_{n+1}=x_{n} \\ \text { Measurement model: } & y_{n}=\operatorname{in}_{n} x_{n}+v\end{array}$

$$
M_{\mathrm{n}}=\left[\begin{array}{lllll}
\alpha_{A n} & \beta_{\mathrm{An}} & \gamma_{\mathrm{An}}-\alpha_{B n} & -\beta_{B_{n}} & -\gamma_{B_{n}} \tag{2.42}
\end{array}-1\right]
$$

The kalman equations (standard filter) reduce to:

$$
\begin{align*}
b_{n} & =P_{n-1} M_{n}^{T}\left(M_{n} P_{n-1} M_{n}^{T}+V_{n}\right)^{-1} \tag{2.44}\\
\hat{x}_{n} & =\hat{x}_{n-1}+b_{n}\left(y_{n}-M_{n} \hat{x}_{n-1}\right) \tag{2.45}\\
P_{n} & =P_{n-1}-b_{n}\left(M_{n} P_{n-1} M_{n}^{T}+V_{n} b_{n}^{T}\right. \tag{2.46}\\
\text { or } \quad P_{n} & =\left(I-b_{n} M_{n}\right) P_{n-1}\left(I-b_{n} M_{n}\right)^{T}+b_{n} v_{n} T
\end{align*}
$$

The actual estimation errors of the simplified system are obtained by considering it to be a suboptimal filter for the full model including satellite position errors and clocks drifts. A simple way to do this in this particular case is shown in Appendix A.

III. SIMULATION RESULTS

A. Introduction.

All simulation runs use two passes from different satellites. Each is from north to south and their subtracks are separated by 1300 miles at the equator. The receivers are both in the vicinity of a point halfway between satellites subtracks and 30 degrees latitude north. In each pass the receivers make 36 sets of Doppler and time measurements which are used by the Kalman filter. Since no inertial sensors are used, the accuracy of the system is mainly determined by the relative position of the receivers with respect to satellite (or satellite subtrack) and not function of the position of the receivers on earth.

A first simulation rum was made and was used as a reference for comparison with all other rus. In the reference run the two receivers are 50 miles apart, 25 miles east and west of a point halfway between the subracks Mil parameters are as described in Sectim it: F: crosscorrelation on time uncorrelated Doppler count errors is set to 0.5 .

We want to compare three systems:
a) Using Doppler counts only (conventional Transit)
b) Using time measurements only
c) Using both types of measurements

For convenience they will be called Doppler system, Time system and Doppler and Time system respectively.

Fig. $3.1 \mathrm{a}, \mathrm{b}, \mathrm{c}$ and $3.2 \mathrm{a}, \mathrm{b}, \mathrm{c}$ show the decay of the estimation errors for all three systems and for altitude, latitude and longitude for two passes (first pass is from first iteration to 3 óth, and second is pass

Fig. 3.Ia. Absolute position error (altitude)

Fig. 3.1b. Absolute position error (1ativade)

Fig. 3.1c. Absolute position error (1ongitude)

Fig. 3.2a. Relative position error (altitude)

Fig. 3.2b. Relative position error (latitude)

Fig. 3.2c. Relative position error (longitude)
from 37 th iteration to 72 nd). The r.m.s values of the position errors in altitude, latitude and longitude, for the three systems, at the end of each pass are shown on Table 3.1.

Table 3.1. Expected position errors after one satellite pass and after two satellite passes, for nominal values of parameters (reference rum)

	Altitude		Latitude		Langitude	
Satellite pass	lst	2nd	lst	2nd	lst	2nd

This table shows that the Time system does a little better than the Doppler system for absolute positioning, and the Time system is much better than the Doppler system for relative positioming.

The above demonstrates that when using both types of measurements there is some improvement for absolute positioning, while for relative positioning the time measurements give much better results and make the Doppler measurements worthless.

B. Influence of Crosscorrelation

Two runs like the reference run were made where the crosscorrelation in Doppler counts was changed to 0.0 and 0.9 . The results are shown in Table 3.2, and they show that the conclusions made from the reference run remain valid. The Time system is not dependent on this crosscorrelation so it is not shown in these tables. The relative positioning accuracy of the Doppler system improves as the crosscorrelation increases.

Table 3.2. Influence of the crosscorrelation between the Doppler count errors in both receivers

	Altitude	Latitude		Longitude 1st

Crosscorrelation $=0.0$

Time and Doppler measurements						
Absolute A	31.9	64.5	65.4	60.4	82.3	61.7
Absolute B	84.0	64.5	66.8	60.4	80.9	61.7
Reiative	intos 0	38.8	21.9	9.2	94.7	8. 0
Doppler measurements only						
Absolute A	92.8	86.3	82.7	74.1	93.5	86.0
Absolute B	93.7	86.3	83.6	74.1	93.3	86.0
Relative	131.3	121.0	103.1	84.3	131.2	120.1

$$
\text { Crosscorrelation }=0.9
$$

Time and Donnler measurements

Absolute A	82.7	67.2	67.6	64.1	83.4	65.2
Absolute B	84.9	67.3	69.1	64.1	82.2	65.2
Relative	98.3	34.7	21.7	8.9	94.4	8.8
Doppler measurements only		72.9	71.0	65.8	87.8	72.6
Absolute A	86.1	87.8	72.9	72.5	66.8	87.4
Absolute B	85.7	65.5	48.3	32.7	110.2	64.3
Relative	108.7					

Table 3.3. Influence of the distance between receivers (receivers 5 miles apart

Satellite pass	Altitude		Latitude		Longitude	
	1st.	2nd	1st	2nd	1st	2nd
Time and Doppler measurements						
Absolute A	83.7	66.8	67.7	63.8	82.5	64.1
Alssolute B	83.9	66.8	67.8	63.8	82.4	64.1
Relative	99.8	38.2	21.8	9.1	94.6	8.5
Time measurements only						
Absolute A	86.6	73.4	71.5	70.9	85.1	70.8
Absolute B	86.8	73.4	71.6	70.8	85.0	70.8
Relative	100.3	39.3	21.9	9.2	94.6	8.5
Doppler measurements only						
Absolute Λ	91.9	83.6	79.4	71.6	92.1	83.1
Absolute B	92.0	83.6	79.5	71.6	92.1	83.1
Relative	125.1	107.5	85.6	65.8	125.2	106.2

Table 3.4. Receivers north-south of each other

Satellite pass	Anciitưue		Latistưưe		Lunigitide	
	1st	2nd	1st	2nd	1st	2nd
Time and Doppler measurements						
Absolute A	83.7	66.6	67.7	63.5	82.3	62.8
Absolute B	84.0	67.0	67.6	63.7	82.5	63.3
Relative	100.0	39.1	22.0	9.3	94.2	8.5
Time measurements only						
Absolute A	86.5	73.3	71.5	70.5	84.9	69.2
Absolute B	86.8	73.6	71.4	70.8	85.2	69.7
Relative	100.4	40.3	22.1	9.5	94.3	8.5
Doppler measurements anly						
Absolute A	91.9	83.5	79.4	71.5	92.0	83.0
Absolute B	92.0	83.7	79.4	71.6	92.2	83.2
Relative	125.1	107.5	85.7	65,9	124.7	105.8

Tables 3.3 and 3.4 show that the results are essentially the same if the two receivers are closer to each other or spread in the north-south direction instead of east-west. Therefore independently of the receivers' relative positions, for a distance of the order of 50 miles between receivers, the conclusions remain the same as for the reference run. The Time system is a little better for absolute positioning but not very significantly considering the lack of accuracy on fixing the parameters of each error source in the Doppler measurements and time measurements. For relative positioning the Time system is much better than the Doppler system. Using both time measurements and Doppler measurements is equivalent to the Time system for relative positioning and a little better for absolute positioning.

C. Satellite Pass Geometry and Estimation of Position

The satellites are assumed to be in polar circular orbits. In practice they are miy in near circuiar arnits bur this aporoxination does not change significantly the bearing of satellite position errors on the estimates of the receivers position errors.

The pass geometry is related to the receiver position estimate errors and also to the relative magnitude of these errors in altitude, latitude and longitude.

From the linearization equation (2.24) one can consider the part of range variation due to variation of the receiver coordinates alone. Or:

$$
\delta \rho=A \delta R+B \delta \theta+C \delta \Lambda
$$

This can be rewritten in terms of variations in feet in vertical, eastwest, and norihosouth directions using the local coorinate system for
the receiver.

$$
\delta \rho=A^{\prime} \delta z+B^{\prime} \delta x+C^{\prime} \delta y
$$

These coefficients give directly the variation of the range in feet caused by variations in either direction in feet and are plotted for the two passes in Fig. 3.3. These express how sensitive the range is to variations of receiver coordinates in any of the three directions.

The decay of the estimation errors in feet in all three directions for conventional receivers using Doppler counts alone, for receivers using time measurements and receivers using both is shown in Fig. 3.1 a, b, c for absolute position of one receiver and Fig. $3.2 a, b, c$ for the relative position of one receiver with respect to the other. These curves show that after one pass (36th iteration) the latitude error is much smaller than the altitude or longitude errors. The plot of the linearization coefficients shows that the coefficients corresponding to altitide and longitude are of comparable magnitude aid vary in a similar fashion during the first pass. Then the estimator cannot separate one from the other, and it gives a poor estimate for both. With the second pass on the opposite side of the receivers (37th to 72nd iterations), the longitude coefficient changes sign. Then for both passes together all three coefficients behave differently enough to mable the filter to separate the errors in all three directions. This illustrates the fact that the distribution of the uncertainty in position between the three directions is mainly a question of the geometry of the satellites passes and that some insight into it can be gained by directly looking at the linearization equation used in the modeling. This also implies that if

Fig. 3.3. Normalized 1 inearization coefficients for two passes
the altitude is initially known accurately then the system will give a better estimate of the longitude, and vice versa, a good initial estimate of the longitude enables the system to give a better estimate of the altitude.

D. Simplified System

It has been noticed that using time measurements alone gives good results for relative positioning. As part of its operation the Kalman filter estimates the satellite position errors, but the improvement it makes on their original estimates is very small. The decay of the variances corresponding to states describing satellite position errors is less than one per cent in one satellite pass. Therefore a simplified system using time measurements alane but which would not estimate the satellite position errors should perform about as well. The model for such a system was given before in Section II.G, and, like the Time sys-
 state vector is reduced from thirteen to seven elements which yields considerable simplification. The recursive equations are further simplified because the dynamic model is trivial involving only states which do not vary with time.
$\mathrm{F}_{\mathrm{i}}{ }^{5}$. 3.4 a and b show the performance of the simpified system for circumstances identical to those of the reference rum. Comparing these plots with those for the Time system shows that there is no appreciable loss of accuracy in either relative or absolute positioning.

Fig. 3.4a. Simplified system (absolute position errors)

Fig. 3. 4b. Simplified system (relative position errors)

E. Clocks Synchronization Error

One interesting aspect of the Time system or the Simplified system is that it is not necessary to have a good synchronization between the clocks in both receivers.

A simulation rum was made where the original expected synchronization error was very high, 10^{9} tines the value used in the reference rum, and the performances of both the Time system and the Simplified system were not significantly affected. This is because during a satellite pass the synchronization error is practically a constant which is easily estimated by the Kalman filter and accounted for in the estimation of positions. This results in an apparent "self alignment" of the clocks which suppresses the synchronization problem all together.

F. Satellite Position Error

It has been mentioned that when using two receivers for relative positioning, satellite position errors tend to cancel out and have little bearing on the relative position error. Also, when using time measurements one can expect little influence of satellite position exror on relative position error of the receivers since the time lag measured is much more sensitive to relative motions of a receiver with respect to the other than it is to comparable motions of the satellite. This is checked by a simulation run where satellite position errors were raised to 300 feet r.m.s for each coordinate instead of the 30 feet r.m.s used in the reference rm. The accuracy is slightly reduced, more so for the simplified system than for the Time system as shown by Table 3.5. More surprisingly this table shows that the absoiute position estimates are aiso practically unaffected by the satellite position error.

Table 3.5. Position errors for Time system and Simplified system for high original uncertainty on satellite position

	Altitude		Latitude		Langitude	
Satellite pass	1st	2nd	lst	2nd	1st	2nd
Time system						
Absolute A	86.4	73.4	70.9	70.1	87.8	70.9
Absolute B	88.3	73.4	72.4	70.1	87.7	70.9
Relative	102.7	40.6	24.2	9.69	103.9	12.2
Simplified system						
Absolute A	86.4	73.4	70.9	70.3	87.8	71.0
Absolute B	88.3	73.4	72.4	70.3	87.6	71.0
Relative	102.7	40.6	24.2	9.73	103.9	13.5

IV. CONCLISION

The goal of this study was to find out how much improvement could be expected, when using time measurements in addition to the Doppler measurements normally found in Transit systems, when two receivers are used for geodesy.

Simulation runs indicate that there should be a great improvement in accuracy both for absolute and relative positioning. In the case of relative positioning, Doppler data could be left out entirely since simulation indicates that using time measurements alone gives nearly as good results as using both time and Doppler measurements. This would simplify the receivers and the associated data processing.

When using time measurements only, simulation shows that neglecting the satellite position errors in the filtering process does not significantly affect performance. This could further simplify the software part of the system.

A striking result is that accurate synchronization of the clocks is not recessary.

Then the main difference in the implementation of a system using time measurements conmared to one using Doppler measurements is the extra two clocks. Precision Cesium clocks are relatively expensive but might well be feasible in many surveying applications.

v. REFERENCES

1. R. G. Brown. "Kalman Filter Notes." Department of Electrical Engineering, Iowa State University, June; 1968.
2. R. G. Brown; and L. L. llageman. "An Optimal Inertial/Doppler-Satellite Navigation System。" Engineering Research Institute Report, Iowa State University, 1968.
3. R. C. Brown; and C. L. Hartman. "Kalman Filter with Delayed States as Observables." Proc. National Electronics Conference, July, 1968.
4. R. G. Brown; and J. W. Nilsson. Introduction to Linear Systems Analysis. New York: Wiley, 1962.
5. 6. A. Conrad. "Error Analysis of Navigation Satellite Systems." Proc. Third International Conference on Automatic Control in Space, Toulouse, France, 1970.
1. D. R. Doty; and H. Halmandaris. Technical Report. Encino, Calif.: Satellite Positioning Corp., April 18, 1969.
2. C. E. Ewing; and .1. M. Mitchell. Introduction to feodesy. New York: American Elsevier Publishing Co., Inc., 1970.
3. R. C. Hyatt; L. I. Mueller; and T. N. Osterdock. "A High Performance Beam Tube for Cesium Bean Frequency Standard." Hewlett Packard J., Sept. 19, 1973.
 Theory." J. Basic Engr., 83D(1960), 35-45.
4. R. B. kershner. "Status of the Navy Navigation Satellite System." Practical Space Applications; 21(1967), 41-59.
5. E. Parzen. Stochastic Processes. San Francisco, Calif.: Holden Day, 1962.
6. H. W. Sorenson. "Kalman Filtering Techniques." Advances in Control Systems, Vol. 3, pages 219-289. Edited by C. T. Leondes. New York: Acadenic Press, 1966.
7. T. A. Stanse11. "The Navy Navigation Satellite System: Description and Status." J. Institute of Navigation, 15, No. 3 (1968), 229-243.
8. T. A. Stansel1. "Transit, the Navy Navigation Satellite System." J. Institute of Navigation, 18, No. 1(1971), 93-109.
9. R. L. Stuva. "Computation Aspects of Kalman Filtering with Delayed States as Observables." Unpublished Y.S. thesis, Iowa State University, 1973.
10. E. E. Westerfield; and G. Worsley. "Translocation by Navigation Satellite." APL Technical Digest (July-August, 1966), 2-10.

VI. ACKNOWLEDGIENTS

I wish to express my appreciation to my major professor, Dr. Robert G. Brown, for his suggestions and guidance in the preparation of this thesis.

I also wish to express my gratitude to the Engineering Research Institute of Iowa State University for their support in this work.

This work was also supported in part by Office of Naval Research Contract N000014-68A-0162.
VII. APPENDIX A:

SIMULATION OF SITPLIFIED SYSTEM

The model for the simplified system is given by equations (2.41, 42, 43) and its filter algorithm by equations (2.44 to 2.47) .

Since we need the full model to get the actual errors of the simplified system it is sinpler to simulate the simple system using the program for the full system. Consider the partitioned system:

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { dynamic model }} \\
y=\left(1_{1} 1_{2}\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+v \quad \text { measurement model } \\
\text { Let } \quad P_{n-1}=\left[\begin{array}{ll}
p_{n-1} & 0 \\
0 & 0
\end{array}\right] \text { and } H=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

Thon using kalman equations one gets:

$$
\begin{align*}
& b_{n}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]_{n}=\left[\begin{array}{c}
p_{n-1} 1_{1}^{T}\left(M_{1} p_{n-1} 1_{1}^{T} T+v\right)^{-1} \\
0
\end{array}\right] \tag{A,3}\\
& P_{n}=\left[\begin{array}{c}
\left(I-b_{1} M_{1}\right) p_{n-1}\left(I-b_{1}^{M} M_{1}\right)^{T}+b_{1} \mathrm{Vb}_{1}^{T} \\
0
\end{array}\right. \tag{A.4}
\end{align*}
$$

b_{1} is the same as given by equation (2.44) and the upper left comer of P_{n} is the same as given by (2.47). Therefore the above behaves like the simplified system using the same Kalman equations (including full measurement equations) as the full system, the only difference being the initial P and H matrices, then we can use two sets of error covariance
matrices, one for the error seen by the simplified system and one for the actual errors and cycle them through the same Kalman recursive equations in the following manner:

1) Compute the suboptimal gain b_{n} from error covariance matrix seen by the simplified system using (2.44).
2) Update the error covariance matrix seen by the simplified system using (2.47).
3) Update actual error covariance matrix for full system using (2.11) and compute actual estimates of position errors of simplified system.

VIII. APPENDIX B:

ROUND-OFF ERRORS

The recursive equation for the error covariance matrix is $\mathrm{P}_{\mathrm{n}}=$ (I $\left.-b_{n} M_{n}\right) P_{n-1}\left(I-b_{n} M_{n}\right)^{T}+b_{n} V_{n} T$. One way of computing is as follows: compute: $\quad \mathrm{b}_{\mathrm{n}} \mathrm{M}_{\mathrm{n}}$
then: $\quad\left(\mathrm{I}-\mathrm{b}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}\right)$
then: $\quad\left(I-b_{n} \cdot h_{n}\right) P_{n-1}\left(I-b_{n}{ }^{\prime} h^{\prime}\right)^{T}+b_{n} V b_{n}{ }^{T}$
This causes round-off errors to make the covariance matrix very unsymetric and make the simulation invalid. This happens because elements of $\mathrm{P}_{\mathrm{n}-1}$ are much greater than elements of $\mathrm{b}_{\mathrm{n}} \mathrm{M}_{\mathrm{n}} \mathrm{P}_{\mathrm{n}-1}$ with which they are added in both pre and post multiplications. Separating smaller and bigger terms alleviates this. We rewrite:

$$
\begin{aligned}
P_{n}=P_{n-1} & -b_{n} V_{n} P_{n-1}-P_{n-1} 1_{n}^{T} b_{n}^{T} \\
& +b_{n}{ }_{n}^{\prime} n_{n-1}^{n} 1_{n}^{N} b_{n}^{T}+b_{n} V_{n} T
\end{aligned}
$$

The above products are computed before summing and nonsymmetry is generated by the fourth temn alone. So doing the relative difference between corresponding off-diagonal temns in one step of computation is less than 0.01%, compared to more than 100% using the first method, before it is symetrized by doing:

$$
\text { new } \quad P_{i j}=\frac{P_{i j}+P_{j i}}{2}
$$

IX. APPEVDIX C:

CORUIIER PROGRAM LISITNG FOR REFERENCE RLN

```
T/
C VARIANCE ANALYSIS OF SURVEYING SYSTEM USING SATELLITES
    IMPLICIT REAL*8(A-H,O-ZI,INTEGER(I-N)
    INTEGER DCP,CLOC
    REAL*8 MA1,MN2,NN1,MB,NPH,MH,LAMBDI
    OIMENSION P(16,16),PC(16,16),PC(16,16)
    CONMCN FCL (3,3),A(3,3,3)
    1),NN1(2,16),MN2(1,16),AC(6),LDUM
    CEMMON /KAL/VNI(2,2),H(16,16),VN2,PHI( 16,16),MNI(2,16
C
C...........................NON TIME VARYING ELEMENTS.
C NUMBER OF ITERATIONS IN ONE SATELLITE PASS
        NUMIT=3t
C ENTER CONSTANTS
    DT=20.0C0
    RE=2.092574 D07
    GM=0.14C7E54017
    PCL(1,3)=RE+600.000*6080.000
    OMEGS=[SGRTIGM/PCL(1,3)**3)
    CMEGA=7.29`115C-5
    PI=3.1459265358979300
    FEET=6C8C.OD0
    RAD=PI/180.000
    CELI=0.304800/3.008
    LAMBDI=400.006*CELI
C ORIGINAL GRCUND STATICNS COORDINATES ESTIMATES
    TETAD=3C.CDO*RAD
    POL(1,1)=2.092574DC7
    PCL(2,1)=TETAO+25.0C0*FEET/POL(1,1)
    POL (3,1)=0.000
    FOLii.2i=2.0人\2574007
    POL (2,2)=TETAO-25.0CO*FEET/POL (1,1)
    POL (3,2)= 0.0DC
    R13=1.0[-8
    B14=B13
    815=813
C CORRELATEC fRROR variances
    VM13= 4.0[-3**2
    VM14=VN1?
    VM15=25.000**2
    VM1E=5.0C-11**2
C UNCDRRELATEC ERROR VARIANCES
    VW13=2.CD2
    VW14=VW13
    VW16=5.00-8**2
C INITIALILE NATRICES
    DD 105 I= 1,16
    DO 105 J=1,16
    P(1:J)=0.000
    PHI(I,J)=C.ODO
```

```
        H(I,J)=C.CDO
        IF(I.GT.1) GJ TO 103
        MN2 (I,J)=0.300
    103 IF(I.GT.2) GO TO 105
        MNI(I,J)=C.ODO
        NNI (I,J)=C.000
        105 CONTINUE
C COMPUTE WHITE CRIVEN STATES COVARIANCE MATRIX
        H(13,13)=VM13*(1.ODO-DEXP(-2.0DO*B13*CT))
        H(14,14)=H(13,13)
        H(15,15)=VM15*(1.000-DEXP(-2.ODO*B15*DT))
        H(16,16)= VM16*DT
C COMPUTE TRANSITION MATRIX PHI
        CO 110 I =1,6
    110 PHI(I,I)=1.ODO
        CO 112 I=7,12
    112 PHI(I,I)= DCOS(CMEGS*DT)
        U0 ili4 i= =`,il,2
    114 PHI(I,I+1)= DSIN(OMEGS*DT)/OMEGS
        DO 116 I = 8,12,2
    116 PHI(I,I-1)= -DSIN(OMEGS*DTI*OMEGS
        PHI(13,13)= DEXP(-B13*CT)
        PHI(14,14)=PHI(13,13)
        PHI(15,15)=PHI(13,13)
        PHI(16,16)=1.000
C INITIALIZE ERROR COVARIANCE MATRIX
        P(1,1)=1.CD4
        P(2,2)=F(1,1)/RE**2
        P(3,3)=P(1,1)/(RE*DCOS(PCL(2,1)))**2
        N(4,4)=1=004
        P(5,5)=P(4,4)/RE末〒=2
        P(6,6)=P(4,4)/(RE*DCOS(POL (2,2)))**2
        P(7,7)=30.000**2
        P(8,8)=[MEGS*CMEGS*P(7,7)
        P{9,9i={30.000iPOLi(i,3i)**2
        P(10,10)=CNEGS*OMEGS*P(9,9)
        P(11,11)=(30.ODC/(POL(1,3)*OCOS(TETAO-OMEGS*NUMIT*10.
        1000)||**2
        P(12,12)=P(11,11)*CMEGS*OMEGS
        P{13.13)=VM13
        P(14,14)=VM14
        P(15,15)=VN15
        P(16,16)= VM16*3t.002*24*30
C PC COVARIANCE MATRIX CLECKS ALONE, PD DOPPLER ALONE
            OO 130 J=1,16
            CC 130 I=1,16
            PD{i,Ji=P(I,J)
        130 P((I,J)=P(I,J)
C CCMPUTE MEASUREMENTS ERROR COVARIANCE MATRICES
    COR=0.50C
```

```
            VN1(1,1)=VW13
            VN1(1,2)=COR*VW13
            VN1(2,1)=VN1(1,2)
            VN1(2,2)=VW14
            VN2=VW16
C
C ...........TIME DEPENDENT COMPUTATIONS....................
            SLAN=.196D0
            NPASS=0
            8 NPASS=NPASS+1
            LDUN=0
            T=-NUMIT*10.000
            10 T=T+DT
            LDUN=LCLM+1
C SATELLITF CCOROINATES
            POL (2,3)=CMEGS*T +TETAO
            POL (3,3)=-CMEGA*T+SLAM
C COMPUTE MEASUREMENTS MATRICES
C STORE PART CF DF CLD MNl AS NFW NNI
            OO 210 I=1,2
            OO 210 J=1,11
    210 NNI(I,J)=-NN1(I,J)
C CCMPUTE NEW MEASUREMENTS MATRICES
215 CALL CCEF
    MN1(1,1)=A(1,1,3)*LAMBDI
    MN1(1,2)=A(2,1,3)*LAMBDI
    MN1(1,3)=A(3,1,3)*LAMBDI
    MN1(1,7)=A(1,3,1)*LAMBDI
    MN1(1,9)=A(2,3,1)*LAMBDI
    NA1{1,11:=A{3,3,1;*LAMODI
    MN1(1,13)=-DT
    MN1(1,15)=DT
    MNI(2,4)=A(1,2,3i*LAMBDI
    MN1(2,5)=Á(2,2,3)*LAMBDI
    NN1(2,6)=A}(3,2,3)*LAMBDI
    MN1 (2,1)=A(1,3,2)*LAMBDI
    MN1(2,5)=A(2,3,2)*LAMBDI
    MN1(2,11)=A(3,3,2)*LAMBDI
    MN1(2,14)=-0T
    MN1(2,15)=DT
    MN2(1,1)=A11,1,3)*CELI
    MN2(1,2)=A(2,1,2)*CELI
    MN2(1,3)=A(3,1,3)*CELI
    MN2(1,4)=-A(1,2,3)*CELI
    MN2(1,5)=-A{2,2,3)*CELI
    MN2(1,6)=-A(3,2,3)*CELI
    MN2(1,7)=(A(1,3,1)-A(1,3,21)*CELI
    MN2(1, ¢)=(A(2,3,1)-A(2,3,2))*CELI
    MN2 (1, 11)=(A(3,3,1)-A(3,3,2))*CELI
    MN2(1,16)=-1.000
```

```
C LINEAR coEFS feEt tc feET
    AC(1)=A(1,1,3)
    AC(2)=A (2,1,3)/RE
    AC(3)=A(3,1,3)/RE/DCOS(POL (2,1))
    AC(4)=A(1,2,3)
    AC(5)=A(2,2,3)/RE
    AC(6)=A(3,2,3)/RE/DCOS(POL (2,2))
    WRITE(6,1215)(AC(I),I=1,6)
    1215 FORMAT(' ',T13,6C15.41
C COMPUTE NEW COVARIANCE MATRICES
    CALL KALMAN(1,1, P)
    CALL KALNAN(0,1,PC)
    CALL KALMAN(1,0,PD)
    900 IF(LDUM.LT.NUMIT) GO TO 10
    IF (NPASS.FQ.2) GO TO 500
C
C REINITIALIZF FART OF COVARIANCE MATRIX FOR NEW SATELLITE
    00 380 J=i,16
    00 380 I= l,J
    IF(j.LE.t) GO TO 380
    IF{J.GF.7.AND.J.LE.12.OR.J.EQ.15IGO TO 375
    IF(I.LE-6) GO TO. 380
    IFII.EQ.13.OR.I.EQ.14.OR.I.EQ.IGIGO TO 380
375 P(I,J)= C.0DO
    PC(I,J)=C.ODO
    PC{I,J)=C.ODO
380 CONTINUE
    P(7,7)=30.0[0**2
    P(8,8)=CNEGS*CMEGS*P (7,7)
    P(9:9)={30=000!PO! !1;3!!**2
    P(10,10)=CMEGS*CMEGS*P(9,9)
    P(11,11)=(30.0C0/(POLii,3i*DCOS(TETAO-CMEGS*NUMIT*10.
    100011)%&2
    P(12,12)=P(11,11)*OMEGS*CMEGS
    P(15,15i=vM15
    P (16,1t)=P (16,16)+VM16*3E.002*2.0DO
    PC(16,1t)=PC(16,16)+VM16*36.002*2.000
    PD(16,16)=PC(16,16)+VM16*36.002*2.000
    00 390 I=7,15
    IF(I.EG.13) GO TO 390
    IF(IOEQ.14) GO TO 390
    PD(I,I)=P(I,I)
    PC(I,I)=P(I,I)
    390 CONTINUE
    OD 395 I= 1,16
    OD 395 J=1,I
    P{I,J}=P{J,I)
    PC(I,J)=P[(J,I)
    PC(1,J)=P(1J,I)
355 CONTINUE
```

```
        SLAN=-.lGECO
        GO TO &
    500 STOP
    END
C
C
C
C
C
C
    SUBROUTINE KALMAN(DOP,CLOC,P)
C THIS SUBRQUTINE CCES ONE STEP OF KALMAN ALGORYTHM
    IMPLICIT REAL*&(A-H,O-ZI,INTEGER(I-N)
    INTEGER [CP,CLCC
    RFAL*B NN1,MN2,NN1,MB,NPH,MH
    DIMENSICN COV (9),ME(2,16),MPH(2,16),PHIT(16,16),
    IDUM1( 2,16),DUN2( 2,16),QP(2,2),MH(2,2),QN(2,2),
    2DUM3(16, 2),STA(S) ,GNI(2,2),
    3P(16,16), BQ(16,2), ENI(16,2),PHIP(16,16),PPPT(16,16)
    COMMCN PCL (3,3),A(3,3,3)
    COMMCN /NAT/N,JN,JM
    CGMMON /KAL/VN1(2,2),H(16,16),VN2,PHI( 16,16),MN1(2,16
    11,NN1{2,16),MN2(1,16),AC(6),LDUM
    EQUIVALENCE(MPH,CUM1,DUM3,BQ ),(MB,BN1),(PHIP(1),
    1DUM2(1))
    399 FORMAT(' 0,2(T3,8D16.9/il
    N=16
    JN=7
    JM=12
C SN'IF DOPFLER COUNTS AT LDUM=I :FIRST NEASUREMENTS:
    IF(LDUM.EG.1) GO TO 400
C......PROCESS DOPPLER CATA BY STUVAS'S ALGORYTHM.........
    CALL FOSTNT( NNL,PHI,MPH,2)
    IF (DOP.EG.O) GO TO 3061
    DO 302 I = 1,2
    00 302 J=1,16
302 ME(I,J)=NFH(I,J)+NNI(I,J)
    DC 30c I=1,2
    D! 303 J=1,16
    OUBI=C.OCC
    DUB2=0.OCC
    DO 301 K=1,16
        DUE l=DUB1 +ME(I,K)*P(K,J)
        CUB2= CUB2&MN1(I,K)*M(K,J)
    OUMI(I,J)=OUBI
303 DUM2(I,J)=OUB2
    DO 306 L=1,2
    SUM=0.OLC
    DJ 305 J=1,16
```



```
    306 GN(I,L)=SLM+VNI(I,L)
C COMPUTE GN IAVERSE =QNI
        DUB=QN(1,1)*QN(2,2)-GN(2,1)*QN(1,2)
        GNI(1,1)= GN(2,2)/DUB
        GNI(1,2)= - GN(1,2)/DUB
        GNI (2,1)=-GN(2,1//OUB
        QNI (2,2)= 6N(1,1)/DUB
    30€1 CALL PREMT(PHI,P,PHIP,161
C COMPUTE PHI TRANSPOSE
    DO 365 I=1,16
    CO 365 J=1,16
    365 PHIT(I,J)=PHI(J,I)
        CALL FCSTNT(PHIP,PHIT,PPPT, 16)
        IF (DDP.EG.O) GO TO 380
        CO 350 I=1,16
        CO 350 J=1,2
        SUM1=0.CEC
        CD 345 K=1,16
    345 SUNl= SUMI +PHIP(I, K)*MB(J,K)+H(I,K)*MN1(J,K)
    350 CUM3(I,J)=SUM1
` CCMPLTE KALNAN GAIN (DCPPLER )
        CO 3&0 I=1,16
        DO 360 J=1,2
        SUN1=0.C[C
        00 355 K=1,2
    355 SUM1= SUMI+LUM3(I,K)*GNI(K,J)
    360 ENI(I,J)= SUM1
C CTMPUTË ERRCR COVARIANCE MATRIX AFTER USING DOPPLER DATA
    380 DC 387 I=1,16
        IF (OOP.EG.O) 6O TO 3855
        OD 385 J=1,2
        DUN =0.OCO
        CO 384 K=1,2
    384 D(NM=CUM +BN1(I,K)* GN(K,J)
    385 EQII,Ji=DUM
3855 DO 387 L=1;16
    SUN=0.OCO
    IF (COP.EG.O) GO TO 3861
    DD 386 J=1,2
        SLH=SUM+ EQII,J)*BNI(L,J)
    38\in1 P(I,L)=-SUM+H(I,L)+PPPT(I,L)
    IF (CABSI P(I,LI)-1.0D-251388,388,387
    388 P(I,L)=C.0C0
    3 8 7 \text { CONTINUF}
    400 WRITEIE,4990I CLOC,CLOC,CLOC,CLCC,DOP,DOP,DOP,DOP,LDUM
4990 FORNAT('0',T10,'CLOCKS:':411,T30,'DOPPLER:',4I1,T50,
    IITER:G,Iz)
    IF (DCPOEG.0) GO TO 401
    WRITE(E,3SS)(P(I,I),I=1,16)
    IF (CLCC.EG.0) GO TO 430
```

```
C....PROCESS TIME MEASUREMENTS BY STANDARD ALGORYTHM.......
    401 DO 405 J=1,16
            CUN=0.C[C
            DO 404 K=1,16
    404 CUN=DUM + P(J,K)*NN2(1,K)
    405 DUM3(J,1)=DUM
    CCM=0.CDC
    CD 410 K=1,16
    410 DON= OCN+MN2(1,K)*DUM3(K,1)
    DUN=DCN+VN2
    CO 412 J=1,16
    412 DUM3(J,2!=DUM3(J,1)/DUM
C ERROR COVARIANCE MATRIX AFTER USING ClOCKS DATA
    DO 420 I =1,16
    CO 420 J=1,16
    420 P(I,J)= P(I,J)- DUM3(I,2)*DUM3(J,1)
    CO 440 I=1,16
    D0 440 J=1.si
    P (I,J)=(F (I,J)+P (J,I))/2.000
    IFICARS(P(I,J)).LT.1.00-25)P(I,J)=0.000
    P (J,I)=0 (I,J)
    440 CONTINUE
    WRITE(E,3CG)(P(I,I),I=1,16)
C..........ENC OF KALMAN COMPUTATIONS
C CCMPUTE CCVARIACES IN FEET**2 UP,NORTH,EAST
    430 CC21=CCCS!POL(2,1))
        2C22=DCOS(POL (2,2))
        PCL1l=PCL(1,1)**2
        POL12=PCL(1,2)**2
        CCV(1)=P(1,1)
        CLvizi=piz,zi×FCiiI
        COV(3)=P(2,3)*POL11*DC21**2
        COV(4)=P(4,4)
        COV(5)=P(5,5)*PCL12
        COV(6:=P(t,6)*POL12*DC22**2
        Cov(7)=P(1,1)+P(4,4)-2*P(4,1)
        COV(8)=(P(2,2)&P(5,5)-2#P(5,21) कPOL11
        COV(9) = (P( 3,3)+P(6,6)-2*P(6,3))*POL11*DC 21**2
C COMPUTE STANCARD DEVIATICNS IN FEET UP,NORTH,EAST
            UE &50 i= i,5
        450 STA(I)=CSGRT(COV(I))
            WRITE(\epsilon,499)(STA(I),I=1,9)
    499 FORMAT(' ',3(3(3X,D23.16)/))
        WRITE(7,4991) STA,AC
    4991 FORMAT(1X,15A4)
            RETURN
            END
C
C
C
```

C
surfoutine coef
C SUBROUTINE CONPUTES GECMETRY PARAMETERS
IMPLICIT REAL*8(A-H\&O-Z),INTEGER(I-N)
CIMENSICN $C(3,3)$
CCMMCN $P(3,3), A\{3,3,3)$
$K D=C$
$\mathrm{JD}=0$
C0 $52 \quad \mathrm{~J}=1,3$
CO $51 \mathrm{~K}=1,3$
C NOW SKIP NCA LSED J,K PAIRS
IF(J.EG.K) Gח TO 51
IF (J+K.EG.3) GC TO 51
C EARTH XYZ COCRDINATES OF K
IF(K.EG.KC) GO TC 35
$K D=K$
DC $2 \mathrm{~K}=\mathrm{LCCS}(P(2, K))$

$Y=P(1, K) * C C 2 K \quad * \operatorname{SIN}(P(3, K))$
$Z=P(1, K) * \operatorname{CSIN}(P(2, K))$
C DIRECTICN CCSINES OF J W/R EARTH XYZ
35 IF (J.EG.JD) EC TO 45
$J D=J$
$\operatorname{CS} 2 J=\operatorname{CSIN}(P(2, J))$
OS3J=OSIN(P $(3, J))$
$C C 2 J=\operatorname{CCSS}(P(2, J))$
$[C 3 J=\operatorname{DCCS}(P(3, J))$
$C(2,1)=-0 \leq 2 J * D C 3 J$
$C(2,2)=-[S 2 J * O S 3 J$
$\mathrm{C}\{2,31=\mathrm{CC} 2 \mathrm{~J}$

$C(3,2)=-$ CC 3 J
$C(3,3)=C . C D O$
C(1,1)=[C2J*DC3J
C\{1,2:=[C2J*OS3J
$C(1,3)=[S 2 J$
$450050 \quad \mathrm{I}=1,3$
$R C=(C(I, 1) * X+C(I, 2) * Y+C(I, 3) * Z) / P(1, K)$
IF(I.GT.1) GO TO 40

$1 P(1, K) * R C)$
40 IF (I-2) 48,47,46
$47 A(I, J, K)=-P(l, J) * P(1, K) * R C / R H O$ GO TO 50
46 A(I, $\quad 4, K)=P(1, J) * P(1, K) * R C / R H O$ GOTO 50
$48 \mathrm{~A}(\mathrm{I}, \mathrm{J}, \mathrm{K})=(\mathrm{P}(1, \mathrm{~J})-\mathrm{P}(1, K)=R C) /$ RHO
50 CONTINUE.
sl CONTINUE
s2 CONTINUE

```
    RETURN
    END
C
C
C
C
    SUBROUTINE POSTMTIA,B,P,M)
C SUBROUTINE TC POSTNULTIPIY BY SPARSE MATRIX
    IKPLICIT REAL*8(A-H,O-Z),INTEGER(I-N)
    CCMMON /MAT/N,JNGJM
C FOST MULTIPLY BY ALMOST DIAGCNAL MATRIX P=A*B
    DIMENSICN A(M,N),E(N,N),P(M,N)
    CO 20 I=1,M
    CO 20 J=1,N
        2 P(I,J)=C.COO
            IF(J.LT.JNI GO TO 5
            IF(J.LE.JM) GQ TC 15
        5 P(I,J)=A(I,J)*B(J,J)
            GO TO 20
        15 SUN=0.OCO
    DO 16 K=JN,JM
        16 SUN = SUM+A(I,K)%B(K,J)
        P(I,J)= SLM
        20 CONTINUE
        RETURN
        END
C
C
C
C
    SUBROUTINE PREMT(A,B,P,M)
C SUBROUTINE TO PREMULTIPLY BY SPARSE MATRIX
    IMPLICIT REAL*8(A-H,O-Z),INTEGER(I-N)
    CCMMCN /NAT/N,JN,JM
C PREMULTIPLY EY ALMOST OIAGONAL MATRIX
    OIMENSICN A(N,N),E(N,M),P(N,M)
    OO 20 I=1,N
    00 20 J=1,M
    2 P(I,J)=0.CDO
        IF(I.LT.JNI GO TO 5
        IF(I.LE.JF) GOTO 15
    5 P(I,JI= AII,I;#B(I,J)
    GO TO 20
    15SUM=0.0CO
    DD 16 k=JN:JM
    16 SUN=SUM* A(I,K)*B(K,J)
        P(I,J)=SUM
    20 CONTINUE
    RETURN
    ENE
```

